31 research outputs found

    PPAR-α Agonist Fenofibrate Upregulates Tetrahydrobiopterin Level through Increasing the Expression of Guanosine 5′-Triphosphate Cyclohydrolase-I in Human Umbilical Vein Endothelial Cells

    Get PDF
    Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide (NO) synthase. Guanosine 5′-triphosphate cyclohydrolase-I (GTPCH-I) is a key limiting enzyme for BH4 synthesis. In the present in vitro study, we investigated whether peroxisome proliferator-activated receptor α (PPAR-α) agonist fenofibrate could recouple eNOS by reversing low-expression of intracellular BH4 in endothelial cells and discussed the potential mechanisms. After human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) for 24 hours, the levels of cellular eNOS, BH4 and cell supernatant NO were significantly reduced compared to control group. And the fluorescence intensity of intracellular ROS was significantly increased. But pretreated with fenofibrate (10 umol/L) for 2 hours before cells were induced by LPS, the levels of eNOS, NO, and BH4 were significantly raised compared to LPS treatment alone. ROS production was markedly reduced in fenofibrate group than LPS group. In addition, our results showed that the level of intracellular GTPCH-I detected by western blot was increased in a concentration-dependent manner after being treated with fenofibrate. These results suggested that fenofibrate might help protect endothelial function and against atherosclerosis by increasing level of BH4 and decreasing production of ROS through upregulating the level of intracellular GTPCH-I

    Roles of abnormal lipid metabolism in pathogenesis of non-alcoholic fatty liver disease

    No full text
    The prevalence of non-alcoholic fatty liver disease (NAFLD) keeps rising worldwide along with the increasing prevalence of metabolic diseases such as obesity, type 2 diabetes, and dyslipidemia. Although most NAFLD patients present with simple steatosis of hepatocytes, some patients progress to non-alcoholic steatohepatitis, liver cirrhosis, and even cancer. In the Western world, NAFLD is the most common cause of elevated liver enzymes, and hence there has been a growing interest in this disease. Given that fat deposition in the liver is the hallmark of NAFLD, we review the roles and the underlying mechanism of disturbed lipid metabolism in the development of NAFLD and suggest that more insights into the pathogenesis of NAFLD will help develop targeted strategies for the prevention and treatment of this disease

    脂肪酸β‐氧化和线粒体融合参与胰高血糖素受体拮抗剂对糖尿病小鼠心脏微血管内皮细胞的保护作用

    No full text
    Abstract Introduction The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. Research Design and Methods The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag‐based quantitative proteomic analysis. Some target proteins were verified by using western blot. Results Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb‐treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β‐oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin‐1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. Conclusion GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β‐oxidation and mitochondrial fusion in CMECs

    31.3 Topological Routing to Maximize Routability for Package Substrate ∗

    No full text
    Compared with on-chip routers, the existing commercial tools for off-chip routing have a much lower routability and often result in a large number of unrouted nets for manual routing. In this paper, we develop an effective, yet efficient, substrate routing algorithm, applying dynamic pushing to alleviate the net ordering problem and reordering and rerouting for further wire length and congestion reduction. Compared with an industrial design tool that leaves 936 nets unrouted for nine industrial designs with a total of 6100 nets, our algorithm reduces the unrouted nets to 212, a 4.5-times net number reduction and practically more design time reduction

    Glucagon receptor antagonist upregulates circulating GLP-1 level by promoting intestinal L-cell proliferation and GLP-1 production in type 2 diabetes

    No full text
    ObjectiveGlucagon receptor (GCGR) blockage improves glycemic control and increases circulating glucagon-like peptide-1 (GLP-1) level in diabetic animals and humans. The elevated GLP-1 has been reported to be involved in the hypoglycemic effect of GCGR blockage. However, the source of this elevation remains to be clarified.Research design and methodsREMD 2.59, a human GCGR monoclonal antibody (mAb), was administrated for 12 weeks in db/db mice and high-fat diet+streptozotocin (HFD/STZ)-induced type 2 diabetic (T2D) mice. Blood glucose, glucose tolerance and plasma GLP-1 were evaluated during the treatment. The gut length, epithelial area, and L-cell number and proliferation were detected after the mice were sacrificed. Cell proliferation and GLP-1 production were measured in mouse L-cell line GLUTag cells, and primary mouse and human enterocytes. Moreover, GLP-1 receptor (GLP-1R) antagonist or protein kinase A (PKA) inhibitor was used in GLUTag cells to determine the involved signaling pathways.ResultsTreatment with the GCGR mAb lowered blood glucose level, improved glucose tolerance and elevated plasma GLP-1 level in both db/db and HFD/STZ-induced T2D mice. Besides, the treatment promoted L-cell proliferation and LK-cell expansion, and increased the gut length, epithelial area and L-cell number in these two T2D mice. Similarly, our in vitro study showed that the GCGR mAb promoted L-cell proliferation and increased GLP-1 production in GLUTag cells, and primary mouse and human enterocytes. Furthermore, either GLP-1R antagonist or PKA inhibitor diminished the effects of GCGR mAb on L-cell proliferation and GLP-1 production.ConclusionsThe elevated circulating GLP-1 level by GCGR mAb is mainly due to intestinal L-cell proliferation and GLP-1 production, which may be mediated via GLP-1R/PKA signaling pathways. Therefore, GCGR mAb represents a promising strategy to improve glycemic control and restore the impaired GLP-1 production in T2D

    Synergistic anti-tumor effects of liraglutide with metformin on pancreatic cancer cells

    No full text
    <div><p>Either metformin or liraglutide has been reported to have anti-tumor effects on pancreatic cancer cells. However, it is not clear whether their combined treatment has additive or synergistic anti-tumor effects on pancreatic cancer cells. In this study, the human pancreatic cancer cell line MiaPaca-2 was incubated with liraglutide and/or metformin. The cell Counting Kit-8 (CCK-8), colony formation, flow cytometry, and wound-healing and transwell migration assays were used to detect cell viability, clonogenic survival, cell cycle and cell migration, respectively. RT-PCR and western blot analyses were used to determine the mRNA and protein levels of related molecules. Results showed that combination treatment with liraglutide (100 nmol/L) and metformin (0.75 mmol/L) significantly decreased cell viability and colony formation, caused cell cycle arrest, upregulated the level of pro-apoptotic proteins Bax and cleaved caspase-3, and inhibited cell migration in the cells, although their single treatment did not exhibit such effects. Combination index value for cell viability indicated a synergistic interaction of liraglutide and metformin. Moreover, the combined treatment with liraglutide and metformin could activate the phosphorylation of AMP-activated protein kinase (AMPK) more potently than their single treatment in the cells. These results suggest that liraglutide in combination with metformin has a synergistic anti-tumor effect on the pancreatic cancer cells, which may be at least partly due to activation of AMPK signaling. Our study provides new insights into the treatment of patients with type 2 diabetes and pancreatic cancer.</p></div
    corecore