20 research outputs found

    Optomechanically induced optical trapping system based on photonic crystal cavities

    Full text link
    Optical trapping has proven to be a valuable experimental technique for precisely controlling small dielectric objects. However, due to their very nature, conventional optical traps are diffraction limited and require high intensities to confine the dielectric objects. In this work, we propose a novel optical trap based on dielectric photonic crystal nanobeam cavities, which overcomes the limitations of conventional optical traps by significant factors. This is achieved by exploiting an optomechanically induced backaction mechanism between a dielectric nanoparticle and the cavities. We perform numerical simulations to show that our trap can fully levitate a submicron-scale dielectric particle with a trap width as narrow as 56 nm. It allows for achieving a high trap stiffness, therefore, a high Q-frequency product for the particle's motion while reducing the optical absorption by a factor of 43 compared to the cases for conventional optical tweezers. Moreover, we show that multiple laser tones can be used further to create a complex, dynamic potential landscape with feature sizes well below the diffraction limit. The presented optical trapping system offers new opportunities for precision sensing and fundamental quantum experiments based on levitated particles

    Single Color Centers Implanted in Diamond Nanostructures

    Get PDF
    The development of materials processing techniques for optical diamond nanostructures containing a single color center is an important problem in quantum science and technology. In this work, we present the combination of ion implantation and top-down diamond nanofabrication in two scenarios: diamond nanopillars and diamond nanowires. The first device consists of a 'shallow' implant (~20nm) to generate Nitrogen-vacancy (NV) color centers near the top surface of the diamond crystal. Individual NV centers are then isolated mechanically by dry etching a regular array of nanopillars in the diamond surface. Photon anti-bunching measurements indicate that a high yield (>10%) of the devices contain a single NV center. The second device demonstrates 'deep' (~1\mu m) implantation of individual NV centers into pre-fabricated diamond nanowire. The high single photon flux of the nanowire geometry, combined with the low background fluorescence of the ultrapure diamond, allows us to sustain strong photon anti-bunching even at high pump powers.Comment: 20 pages, 7 figure
    corecore