34 research outputs found

    A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish.

    Get PDF
    Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish

    Rapid Optical Cavity PCR.

    Get PDF
    Recent outbreaks of deadly infectious diseases, such as Ebola and Middle East respiratory syndrome coronavirus, have motivated the research for accurate, rapid diagnostics that can be administered at the point of care. Nucleic acid biomarkers for these diseases can be amplified and quantified via polymerase chain reaction (PCR). In order to solve the problems of conventional PCR--speed, uniform heating and cooling, and massive metal heating blocks--an innovative optofluidic cavity PCR method using light-emitting diodes (LEDs) is accomplished. Using this device, 30 thermal cycles between 94 °C and 68 °C can be accomplished in 4 min for 1.3 μL (10 min for 10 μL). Simulation results show that temperature differences across the 750 μm thick cavity are less than 2 °C and 0.2 °C, respectively, at 94 °C and 68 °C. Nucleic acid concentrations as low as 10(-8) ng μL(-1) (2 DNA copies per μL) can be amplified with 40 PCR thermal cycles. This simple, ultrafast, precise, robust, and low-cost optofluidic cavity PCR is favorable for advanced molecular diagnostics and precision medicine. It is especially important for the development of lightweight, point-of-care devices for use in both developing and developed countries

    Fabrication of a Large, Ordered, Three-Dimensional Nanocup Array

    Get PDF
    Metallic nanocups provide a unique method for redirecting scattered light by creating magnetic plasmon responses at optical frequencies. Despite considerable development of nanocup fabrication processes, simultaneously achieving accurate control over the placement, orientation, and geometry of nanocups has remained a significant challenge. Here we present a technique for fabricating large, periodically ordered arrays of uniformly oriented three-dimensional gold nanocups for manipulating light at subwavelength scales. Nanoimprint lithography, soft lithography, and shadow evaporation were used to fabricate nanocups onto the tips of polydimethylsiloxane nanopillars with precise control over the shapes and optical properties of asymmetric nanocups

    Patient-Specific iPSCs-Based Liver-On-A-Chip

    No full text
    corecore