421 research outputs found

    Decoding Single Molecule Time Traces with Dynamic Disorder

    Full text link
    Single molecule time trajectories of biomolecules provide glimpses into complex folding landscapes that are difficult to visualize using conventional ensemble measurements. Recent experiments and theoretical analyses have highlighted dynamic disorder in certain classes of biomolecules, whose dynamic pattern of conformational transitions is affected by slower transition dynamics of internal state hidden in a low dimensional projection. A systematic means to analyze such data is, however, currently not well developed. Here we report a new algorithm - Variational Bayes-double chain Markov model (VB-DCMM) - to analyze single molecule time trajectories that display dynamic disorder. The proposed analysis employing VB-DCMM allows us to detect the presence of dynamic disorder, if any, in each trajectory, identify the number of internal states, and estimate transition rates between the internal states as well as the rates of conformational transition within each internal state. Applying VB-DCMM algorithm to single molecule FRET data of H-DNA in 100 mM-Na+^+ solution, followed by data clustering, we show that at least 6 kinetic paths linking 4 distinct internal states are required to correctly interpret the duplex-triplex transitions of H-DNA

    Reinterpretation of anthocyanins biosynthesis in developing black rice seeds through gene expression analysis

    Get PDF
    The biosynthesis of anthocyanins is still questionable in regulating the quantities of anthocyanins biosynthesized in rice seeds and the expression levels of transcription factors and the structural genes involved in the biosynthetic pathway of anthocyanins. We herein investigated the relationship between the accumulated anthocyanin contents and the expression levels of genes related to the biosynthesis of anthocyanins in rice seeds. Liquid chromatography/mass spectrometry-mass spectrometry analysis of cyanidin 3-glucoside (C3G) in rice seeds showed no accumulation of C3G in white and red rice cultivars, and the differential accumulation of C3G among black rice cultivars. RNA-seq analysis in rice seeds, including white, red, and black rice cultivars, at twenty days after heading (DAH) further exhibited that the genes involved in the biosynthesis of anthocyanins were differentially upregulated in developing seeds of black rice. We further verified these RNA-seq results through gene expression analysis by a quantitative real-time polymerase chain reaction in developing seeds of white, red, and black rice cultivars at 20 DAH. Of these genes related to the biosynthesis of anthocyanins, bHLHs, MYBs, and WD40, which are regulators, and the structural genes, including chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), flavonoid 3´-hydroxylase (F3´H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), were differentially upregulated in black rice seeds. The correlation analysis revealed that the quantities of C3G biosynthesized in black rice seeds were positively correlated to the expression levels of bHLHs, MYBs and WD40, CHS, F3H, F3´H, DFR, and ANS. In addition, we present bHLH2 (LOC_Os04g47040) and MYBs (LOC_Os01g49160, LOC_Os01g74410, and LOC_Os03g29614) as new putative transcription factor genes for the biosynthesis of anthocyanins in black rice seeds. It is expected that this study will help to improve the understanding of the molecular levels involved in the biosynthesis of anthocyanins in black rice seeds

    Trichosanthes kirilowii

    Get PDF
    Trichosanthes kirilowii tuber is a traditional medicine which exhibits various medicinal effects including antidiabetic and anticancer activities in several cancer cells. Recently, it was reported that Cucurbitacin D (CuD) isolated from Trichosanthes kirilowii also induces apoptosis in several cancer cells. Constitutive signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor, is often observed in many human malignant tumor, including breast cancer. In the present study, we tested whether Trichosanthes kirilowii ethanol extract (TKE) or CuD suppresses cell growth and induces apoptosis through inhibition of STAT3 activity in breast cancer cells. We found that both TKE and CuD suppressed proliferation and induced apoptosis and G2/M cell cycle arrest in MDA-MB-231 breast cancer cells by inhibiting STAT3 phosphorylation. In addition, both TKE and CuD inhibited nuclear translocation and transcriptional activity of STAT3. Taken together, our results indicate that TKE and its derived compound, CuD, could be potent therapeutic agents for breast cancer, blocking tumor cell proliferation and inducing apoptosis through suppression of STAT3 activity
    corecore