1,496 research outputs found

    Extremely large perpendicular magnetic anisotropy of an Fe(001) surface capped by 5d transition metal monolayers: A density functional study

    Get PDF
    Significant enhancement of the magnetocrystalline anisotropy (MCA) of an Fe(001) surface capped by 4d and 5d transition metal monolayers is presented in this study using first principles density functional calculations. In particular, an extremely large perpendicular MCA of +10 meV/Ir was found in Ir-capped Fe(001), which originates not from the Fe but from the large spin-orbit coupling of the Ir atoms. From the spin-channel decomposition of the MCA matrix and electronic structure analyses, we find that strong 3d-5d band hybridization in the minority spin state is responsible for the sign changes of the MCA from parallel to perpendicular.open0

    Enhancing Production of Recombinant Proteins from Mammalian Cells

    Get PDF
    The bio-manufacturing of recombinant proteins from mammalian cell cultures requires robust processes that can maximize protein yield while ensuring the efficacy of these proteins as human therapeutics. Recognizing that the challenge of improving protein yield and quality can be met through various approaches, this paper presents three strategies currently being developed in our group. A method for rapidly selecting subpopulations of cells with high production characteristics is proposed. This method combines the efficiency of green fluorescent protein/fluorescence-activated cell sorting (GFP/FACS)–based screening with homologous recombination to generate and select high-producing subclones. Next, the development of chemically defined, protein-free media for enhancing monoclonal antibody production is described. Analysis of culture media effects on the genome-wide transcriptional program of the cell is presented as a means to optimize the culture media and identify potential targets for genetic manipulation. Finally, we propose a method for increasing the extent of intracellular sialylation by improving the transport of CMP-sialic acid into the trans-Golgi. This is hypothesized to increase the sialic acid availability, and may enhance the degree of sialylation in the glycoprotein product.Singapore-MIT Alliance (SMA

    Green Synthesis of Magnetite Nanoparticles (via Thermal Decomposition Method) with Controllable Size and Shape

    Get PDF
    Magnetite (Fe3O4) nanoparticles with controllable size and shape were synthesized by the thermal decomposition method. In contrast to previously reported thermal decomposition methods, our synthesis method had utilized a much cheaper and less toxic iron precursor, iron acetylacetonate (Fe(acac)3), and environmentally benign and non-toxic polyethylene oxide (PEO) was being used as the solvent and surfactant simultaneously. Fe3O4 nanoparticles of controllable size and shape were prepared by manipulating the synthesis parameters such as precursor concentrations, reaction durations and surfactants

    Effective-Medium Theory for the Normal State in Orientationally Disordered Fullerides

    Full text link
    An effective-medium theory for studying the electronic structure of the orientationally disordered A3C60 fullerides is developed and applied to study various normal-state properties. The theory is based on a cluster-Bethe-lattice method in which the disordered medium is modelled by a three-band Bethe lattice, into which we embed a molecular cluster whose scattering properties are treated exactly. Various single-particle properties and the frequency-dependent conductivity are calculated in this model, and comparison is made with numerical calculations for disordered lattices, and with experiment.Comment: 12 pages + 2 figures, REVTeX 3.

    A cluster theory for a Janus fluid

    Full text link
    Recent Monte Carlo simulations on the Kern and Frenkel model of a Janus fluid have revealed that in the vapour phase there is the formation of preferred clusters made up of a well-defined number of particles: the micelles and the vesicles. A cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce the micellisation phenomenon.Comment: 27 pages, 8 figures, 6 table

    Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure

    Get PDF
    Stimuli-responsive behaviors of flexible metal-organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO -adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility

    Radiation inactivation analysis of thylakoid protein kinase systems in light and in darkness

    Get PDF
    Chloroplast thylakoid contains several membrane-bound protein kinases that phosphorylate thylakoid polypeptides for the regulation of photosynthesis. Thylakoid protein phosphorylation is activated when the plastoquinone pool is reduced either by light-dependent electron flow through photosystem 2 (PS2) or by adding exogenous reductants such as durohydroquinone in the dark. The major phosphorylated proteins on thylakoid are components of light-harvesting complex 2 (LHC2) and a PS2 associated 9 kDa phosphoprotein. Radiation inactivation technique was employed to determine the functional masses of various kinases for protein phosphorylation in thylakoids. Under the photosynthetically active radiation (PAR), the apparent functional masses of thylakoid protein kinase systems (TPKXs) for catalyzing phosphorylation of LHC2 27 and 25 kDa polypeptides were 540 +/- 50 and 454 +/- 35 kDa as well as it was 448 +/- 23 kDa for PS2 9 kDa protein phosphorylation. Furthermore, the functional sizes of dark-regulated TPKXs for 25 and 9 kDa proteins were 318 +/- 25 and 160 +/- 8 kDa. The 9 kDa protein phosphorylation was independent of LHC2 polypeptides phosphorylation with regard to its TPKX functional mass. Target size analysis of protein phosphorylation mentioned above indicates that thylakoid contains a group of distinct protein kinase systems. A working model is accordingly proposed to interpret the interaction between these protein kinase systems

    Engineering Mammalian Cells for Improved Recombinant Protein Production

    Get PDF
    The production of recombinant glycoproteins from mammalian cell cultures requires robust processes that can achieve high protein yield while ensuring the efficacy of these proteins as human therapeutics. We describe two approaches currently being developed in our group to genetically engineer cell lines with desirable characteristics for recombinant protein production. To enhance the degree of sialylation in the glycoprotein product, we propose to increase intracellular sialic acid availability by overexpressing the CMP-sialic acid transporters. We are also interested in engineering mammalian cells that can proliferate at reduced cultivation temperatures. Low temperature cultivation of mammalian cells has been shown to enhance glycoprotein production but reduces cell growth. It is hypothesized that a mutant cell line that can proliferate at low temperatures may be coupled with low temperature cultivation to improve recombinant protein production.Singapore-MIT Alliance (SMA

    Investigation of electron irradiation-induced magnetism in layered MoS2 single crystals

    Get PDF
    By using higher acceleration energies than the displacement energy of Mo atoms, the electron irradiation on the layered MoS2 single crystals is found to be an effective and simple method to induce the diamagnetic to ferromagnetic phase transition persisting up to room temperature. The easy axis can be controllable by regulating the electron dose and the acceleration energy. The ferromagnetic states are largely attributed to the strain around the vacancies.clos
    corecore