51,852 research outputs found

    Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms

    Full text link
    Let ll and mm be two integers with l>m0l>m\ge 0, and let aa and bb be integers with a1a\ge 1 and a+b1a+b\ge 1. In this paper, we prove that loglcmmn<iln{ai+b}=An+o(n)\log {\rm lcm}_{mn<i\le ln}\{ai+b\} =An+o(n), where AA is a constant depending on l,ml, m and aa.Comment: 8 pages. To appear in Archiv der Mathemati

    Electro-optic scanning of light coupled from a corrugated LiNbO3 waveguide

    Get PDF
    Light diffracted from a grating output coupler in a Ti-diffused LiNbO3 waveguide is scanned electro-optically. Using a coupling length of 2.5 mm in our arrangement we have demonstrated a scanning capability of one resolved spot per 3 V/µm applied field

    The least common multiple of a sequence of products of linear polynomials

    Full text link
    Let f(x)f(x) be the product of several linear polynomials with integer coefficients. In this paper, we obtain the estimate: loglcm(f(1),...,f(n))An\log {\rm lcm}(f(1), ..., f(n))\sim An as nn\rightarrow\infty , where AA is a constant depending on ff.Comment: To appear in Acta Mathematica Hungaric

    The GEMS Approach to Stationary Motions in the Spherically Symmetric Spacetimes

    Full text link
    We generalize the work of Deser and Levin on the unified description of Hawking radiation and Unruh effect to general stationary motions in spherically symmetric black holes. We have also matched the chemical potential term of the thermal spectrum of the two sides for uncharged black holes.Comment: Latex file, 12 pages, no figure; v2: typos fixed; v3: minor corrections, final version published in JHE

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    Flavor symmetry breaking effects on SU(3) Skyrmion

    Get PDF
    We study the massive SU(3) Skyrmion model to investigate the flavor symmetry breaking (FSB) effects on the static properties of the strange baryons in the framework of the rigid rotator quantization scheme combined with the improved Dirac quantization one. Both the chiral symmetry breaking pion mass and FSB kinetic terms are shown to improve cc the ratio of the strange-light to light-light interaction strengths and cˉ\bar{c} that of the strange-strange to light-light.Comment: 12 pages, latex, no figure

    Spinning String and Giant Graviton in Electric/Magnetic Field Deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4

    Full text link
    We apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to the 11D M-theory with a stack of M2-branes \bot M2-branes, then, through the mechanism of Kaluza-Klein reduction and a series of the T duality we obtain the corresponding background of a stack of D1-branes \bot D5-branes which, in the near-horizon limit, becomes the magnetic or electric Melvin field deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4. We find the giant graviton solution in the deformed spacetime and see that the configuration whose angular momentum is within a finite region could has a fixed size and become more stable than the point-like graviton, in contrast to the undeformed giant graviton which only exists when its angular momentum is a specific value and could have arbitrary size. We discuss in detail the properties of how the electric/magnetic Melvin field will affect the size of the giant gravitons. We also adopt an ansatz to find the classical string solutions which are rotating in the deformed S3S^3 with an angular momentum in the rotation plane. The spinning string and giant graviton solutions we obtained show that the external magnetic/electric flux will increase the solution energy. Therefore, from the AdS/CFT point of view, the corrections of the anomalous dimensions of operators in the dual field theory will be positive. Finally, we also see that the spinning string and giant graviton in the near-horizon spacetime of Melvin field deformed D5-branes background have the similar properties as those in the deformed AdS3×S3×T4AdS_3 \times S^3 \times T^4.Comment: Latex 21 pages, slightly detail calculation

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses previously made for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system is extended to the 7^{7}Li+208^{208}Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the 7^7Li+208^{208}Pb system with the analysis previously made for the 6^{6}Li+208^{208}Pb system.Comment: 7 figures, submitted to PR

    Relations between Neutrino and Charged Fermion Masses

    Full text link
    We find an intriguing relation between neutrino and charged fermion masses, mν32mν12:(mν22mν12)::Vtb4mτ2mb2/mt2:Vcs4mμ2ms2/mc2|m_{\nu_3^{}}^2- m_{\nu_1^{}}^2| : (m_{\nu_2^{}}^2- m_{\nu_1^{}}^2):: V_{tb}^4 m_\tau^2 m_b^2/m_t^2 : V_{cs}^4 m_\mu^2 m_s^2/m_c^2. We further indicate this relation can be predicted by a left-right symmetric model.Comment: 4 pages, 1 figure. Model is slightly corrected. Title is changed. Journal versio
    corecore