48,018 research outputs found
Recommended from our members
Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home
Extreme weather events become more frequent and severe due to climate change. Although energy efficiency technologies can influence thermal resilience of buildings, they are traditionally studied separately, and their interconnections are rarely quantified. This study developed a methodology of modeling and analysis to provide insights into the nexus of thermal resilience and energy efficiency of buildings. We conducted a case study of a real nursing home in Florida, where 12 patients died during Hurricane Irma in 2017 due to HVAC system power loss, to understand and quantify how passive and active energy efficiency measures (EEMs) can improve thermal resilience to reduce heat-exposure risk of patients. Results show that passive measures of opening windows and doors for natural ventilation, as well as miscellaneous load reduction, are very effective in eliminating the extreme dangerous occasions. However, to maintain safe conditions, active measures such as on-site power generators and thermal storage are also needed. The nursing home was further studied by changing its location to two other cities: San Francisco (mild climate) and Chicago (cold winter and hot summer). Results revealed that the EEMs' impacts on thermal resilience vary significantly by climate and building characteristics. The study also estimated the costs of EEMs to help stakeholders prioritize the measures. Passive measures that may not save energy may greatly improve thermal resilience, and thus should be considered in building design or retrofit. Findings from this study indicate energy efficiency technologies should be evaluated not only by their energy savings performance but also by their influence on a building's resilience to extreme weather events
Bias Voltage and Temperature Dependence of Hot Electron Magnetotransport
We present a qualitative model study of energy and temperature dependence of
hot electron magnetotransport. This model calculations are based on a simple
argument that the inelastic scattering strength of hot electrons is strongly
spin and energy dependent in the ferromagnets. Since there is no clear
experimental data to compare with this model calculations, we are not able to
extract clear physics from this model calculations. However, interestingly this
calculations display that the magnetocurrent increases with bias voltage
showing high magnetocurrent if spin dependent imaginary part of proper self
energy effect has a substantial contribution to the hot electron
magnetotransport. Along with that, the hot electron magnetotransport is
strongly influence by the hot electron spin polarization at finite
temperatures
Neutrino mixing in the seesaw model
In the seesaw model with hierarchical Dirac masses, the neutrino mixing angle
exhibits the behavior of a narrow resonance. In general, the angle is strongly
suppressed, but it can be maximal for special parameter values. We delineate
the small regions in which this happens, for the two flavor problem. On the
other hand, the physical neutrino masses are hierarchical, in general, except
in a large part of the region in which the mixing angle is sizable, where they
are nearly degenerate. Our general analysis is also applicable to the RGE of
neutrino mass matrix, where we find analytic solutions for the running of
physical parameters, in addition to a complex RGE invariant relating them. It
is also shown that, if one mixing angle is small, the three neutrino problem
reduces to two, two flavor problems.Comment: 19 pages, 4 figures; added new sections on RGE effects and universal
seesaw; version to appear in EPJ
Mass Terms in Effective Theories of High Density Quark Matter
We study the structure of mass terms in the effective theory for
quasi-particles in QCD at high baryon density. To next-to-leading order in the
expansion we find two types of mass terms, chirality conserving
two-fermion operators and chirality violating four-fermion operators. In the
effective chiral theory for Goldstone modes in the color-flavor-locked (CFL)
phase the former terms correspond to effective chemical potentials, while the
latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone
bosons in the CFL phase, confirming earlier results by Son and Stephanov as
well as Bedaque and Sch\"afer. We show that to leading order in the coupling
constant there is no anti-particle gap contribution to the mass of
Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure
Zero Temperature Chiral Phase Transition in (2+1)-Dimensional QED with a Chern-Simons Term
We investigate the zero temperature chiral phase transition in
(2+1)-dimensional QED in the presence of a Chern-Simons term, changing the
number of fermion flavors. In the symmetric phase, there are no light degrees
of freedom even at the critical point. Unlike the case without a Chern-Simons
term, the phase transition is first-order.Comment: 7 pages, RevTeX, no figure
Visualizing urban microclimate and quantifying its impact on building energy use in San Francisco
Weather data at nearby airports are usually used in building energy simulation to estimate energy use in buildings or evaluate building design or retrofit options. However, due to urbanization and geography characteristics, local weather conditions can differ significantly from those at airports. This study presents the visualization of 10-year hourly weather data measured at 27 sites in San Francisco, aiming to provide insights into the urban microclimate and urban heat island effect in San Francisco and how they evolve during the recent decade. The 10-year weather data are used in building energy simulations to investigate its influence on energy use and electrical peak demand, which informs the city's policy making on building energy efficiency and resilience. The visualization feature is implemented in CityBES, an open web-based data and computing platform for urban building energy research
- …