854 research outputs found

    Detecting axion dark matter with chiral magnetic effects

    Full text link
    We show that dark matter axions or axion-like particles (ALP) induce non-dissipative alternating electric currents in conductors along the external magnetic fields due to the axial anomaly, realizing the chiral magnetic effects. We propose a new experiment to measure this current to detect the dark matter axions or ALP. This non-dissipative currents are the electron medium effects, directly proportional to the axion or ALP coupling to electrons, which depends on their microscopic physics.Comment: 11 pages, 3 figure

    Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal in lipopolysaccharide (LPS)-stimulated astrocytes and microglial BV-2 cells.</p> <p>Methods</p> <p>Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml) for 24 h, in the presence (1, 2, 5 μM) or absence of 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB) DNA binding activity was determined using gel mobility shift assays.</p> <p>Results</p> <p>We found that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal (1, 2, 5 μM) suppresses the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as the production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in LPS (1 μg/ml)-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibited LPS-elevated Aβ<sub>42 </sub>levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3) siRNA and a pharmacological inhibitor showed that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits LPS-induced activation of STAT3.</p> <p>Conclusions</p> <p>These results indicate that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal inhibits neuroinflammatory reactions and amyloidogenesis through inhibition of NF-κB and STAT3 activation, and suggest that 2,4-bis(<it>p</it>-hydroxyphenyl)-2-butenal may be useful for the treatment of neuroinflammatory diseases like Alzheimer's disease.</p

    Clinical features of COVID-19 among patients with end-stage renal disease on hemodialysis in the context of high vaccination coverage during the omicron surge period: a retrospective cohort study

    Get PDF
    Background We determined the clinical presentation and outcomes of the Omicron variant of severe acute respiratory syndrome coronavirus 2 infection in hemodialysis patients and identified the risk factors for severe coronavirus disease (COVID-19) and mortality in the context of high vaccination coverage. Methods This was a retrospective cohort study involving hemodialysis patients who were vaccinated against COVID-19 during March–September 2022, when the Omicron variant was predominant, and the COVID-19 vaccination rate was high. The proportion of people with severe COVID-19 or mortality was evaluated using univariate logistic regression. Results Eighty-three (78.3%) patients had asymptomatic/mild symptoms, 10 (9.4%) had moderate symptoms, and 13 (12.3%) had severe symptoms. Six (5.7%) patients required intensive care admission, two (1.9%) required mechanical ventilation, and one (0.9%) was kept on high-flow nasal cannula. Of the five (4.7%) mortality cases, one was directly attributed to COVID-19 and four to pre-existing comorbidities. Risk factors for both severe COVID-19 and mortality were advanced age; number of comorbidities; cardiovascular diseases; increased levels of aspartate transaminase, lactate dehydrogenase, blood urea nitrogen/creatinine ratio, brain natriuretic peptide, and red cell distribution; and decreased levels of hematocrit and albumin. Moreover, the number of COVID-19 vaccinations wasa protective factor against both severe disease and mortality. Conclusions Clinical features of hemodialysis patients during the Omicron surge with high COVID-19 vaccination coverage were significant for low mortality. The risk features for severe COVID-19 or mortality were similar to those in the pre-Omicron period in the context of low vaccination coverage.This work was supported by a research fund of Chung-Ang Jeil Hospital, Chungbuk, South Korea (CAJ-2022-AS 01). Data analysis was supported by the Bio and Medical Technology Development Program of the National Research Foundation, funded by the Korean government (No. 2021M3E5E3081425)

    Absence of pain in subjects with advanced radiographic knee osteoarthritis

    Get PDF
    Background To investigate the frequency of pain among subjects with advanced radiographic knee osteoarthritis (OA) defined as Kellgren–Lawrence (KL) grade 4 and clinical features associated with pain. Methods Subjects from the Hallym Aging Study (HAS), the Korean National Health and Nutrition Examination Survey (KNHANES), and the Osteoarthritis Initiative (OAI) were included. Participants were asked knee-specific questions regarding the presence of knee pain. Clinical characteristics associated with the presence of pain were evaluated with multivariable logistic regression analysis. Results The study population consisted of 504, 10,152 and 4796 subjects from HAS, KNHANES, and OAI, respectively. KL grade 4 OA was identified in 9.3, 7.6, and 11.5% of subjects, while pain was absent in 23.5, 31.2, and 5.9% of subjects in KL grade 4 knee OA, respectively. After multivariable analysis, female gender showed a significant association with pain in the KNHANES group, while in the OAI group, younger age did. Advanced knee OA patients without pain did not differ from non-OA subjects in most items of SF-12 in both Korean and OAI subjects. Total WOMAC score was not significantly different between non-OA and advanced knee OA subjects without pain in the OAI. Conclusions Our study showed that a considerable number of subjects with KL grade 4 OA did not report pain. In patients whose pain arises from causes other than structural damage of the joint, therapeutic decision based on knee X-ray would lead to suboptimal result. In addition, treatment options focusing solely on cartilage engineering, should be viewed with caution.This work was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI16C0287), a grant of the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education (2017R1A2B2001881), and Hallym University research fun

    Profiling age-related epigenetic markers of stomach adenocarcinoma in young and old subjects

    Get PDF
    The purpose of our study is to identify epigenetic markers that are differently expressed in the stomach adenocarcinoma (STAD) condition. Based on data from The Cancer Genome Atlas (TCGA), we were able to detect an age-related difference in methylation patterns and changes in gene and miRNA expression levels in young (n = 14) and old (n = 70) STAD subjects. Our analysis identified 323 upregulated and 653 downregulated genes in old STAD subjects. We also found 76 miRNAs with age-related expression patterns and 113 differentially methylated genes (DMGs), respectively. Our further analysis revealed that significant upregulated genes (n = 35) were assigned to the cell cycle, while the muscle system process (n = 27) and cell adhesion-related genes (n = 57) were downregulated. In addition, by comparing gene and miRNA expression with methylation change, we identified that three upregulated genes (ELF3, IL1??, and MMP13) known to be involved in inflammatory responses and cell growth were significantly hypomethylated in the promoter region. We further detected target candidates for age-related, downregulated miRNAs (hsa-mir-124-3, hsa-mir-204, and hsa-mir-125b-2) in old STAD subjects. This is the first report of the results from a study exploring age-related epigenetic biomarkers of STAD using high-throughput data and provides evidence for a complex clinicopathological condition expressed by the age-related STAD progression. &amp;copy; the authors, publisher and licensee Libertas Academica Limitedopen

    Hyperelastic, shape‐memorable, and ultra‐cell‐adhesive degradable polycaprolactone‐polyurethane copolymer for tissue regeneration

    Get PDF
    Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%–80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-celladhesive, and degradable) nature and biocompatibility, is considered a potential tissue- regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity
    corecore