35 research outputs found
Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations
This is the published version, also available here: http://dx.doi.org/10.1029/98GL01973.Early 1960's reconnaissance satellite images are compared to more recent image and map data in an interannual and seasonal study of West Central Greenland margin fluctuations. From 1962 to 1992, ice sheet margins to the north and south of Jakobshavn Glacier retreated despite a decline in average summer temperatures. The retreat may be reversing along the southern flank of the ice stream where regional mass balance estimates are positive. From 1950 to 1996, the terminus of Jakobshavn Glacier seasonally fluctuated ∼2.5 km around its annual mean position. The total calving flux during the summer is more than six times that during winter. We identified that summer melting and the break-up of sea ice and icebergs in the fjord are important in controlling the rate of iceberg production. If correct, calving rates may be expected to increase should climate become warmer in the near future
Derived Backscatter Values from JERS-1 Digital Number Distributions Over Ross Island, Antarctica (McMurdo Station).
This report examines the derived backscatter values for different physical properties from one JERS-1 image over Hut Point Peninsula on Ross Island in the McMurdo Station area. The results discussed in this report will be used to determine a suitable location for transponder testing for the Radarsat Antarctic Mapping Project. Histograms of digital number (DN) values (0-255) were created to determine the DN distribution and approximate backscatter value for five locations on a single JERS-1 image. Two locations were chosen over first year sea ice, and one location each over glacial ice, exposed rock, and the McMurdo Station. From published backscatter values for first year ice of -15dB and a DN of 40, estimated from histograms, an approximation of the calibration constant K was calculated and subsequent backscatter coefficients were computed for the remaining locations. Digital numbers peaked at 255 for both glacial ice and McMurdo Station indicating that an area outside of McMurdo Station would be
preferable for transponder testing
??????????????? GIS??? ????????? ?????? ??????, ?????? ??? ??????
As remote sensing and GIS have been considered to be essential technologies for disasters information production, researches on developing methods for analyzing spatial data, and developing new technologies for such purposes, have been actively conducted. Especially, it is assumed that the use of remote sensing and GIS for disaster management will continue to develop thanks to the launch of recent satellite constellations, the use of various remote sensing platforms, the improvement of acquired data processing and storage capacity, and the advancement of artificial intelligence technology. This spatial issue presents 10 research papers regarding ship detection, building information extraction, ocean environment monitoring, flood monitoring, forest fire detection, and decision making using remote sensing and GIS technologies, which can be applied at the disaster prediction, monitoring and response stages. It is anticipated that the papers published in this special issue could be a valuable reference for developing technologies for disaster management and academic advancement of related fields.
??????????????? GIS??? ????????? ???????????? ????????? ?????? ????????? ???????????? ????????? ?????? ????????? ???????????? ??????????????? ?????? ?????? ??? ?????? ????????? ?????? ????????? ????????? ???????????? ??????. ?????? ??????????????? ????????? ????????? ???????????????????????? ??????, ????????? ????????? ?????? ??? ?????? ????????? ??????, ???????????? ????????? ?????? ????????? ?????? ?????? ????????? ????????????????????? GIS ????????? ????????? ?????? ????????? ????????? ????????? ??????. ?????? ??????????????? ????????? ??????, ?????? ????????? ?????? ???????????? ????????????, ????????? ??????, ???????????? ??????, ????????????, ????????????, ????????? ?????? ????????? ??????????????????????????? ????????? ??????????????? GIS ????????? ????????? ????????? ????????? 10?????? ????????? ???????????????. ?????? ???????????? ????????????????????? ?????? ?????? ????????? ????????? ?????? ?????? ????????? ????????? ????????? ???????????? ??? ????????? ????????????
Antarctic Mapping Mission Planning Aids
On November 4, 1995, the Canadian RADARSAT was carried aloft by a NASA rocket launched from Vandenburg Air Force Base. Radarsat is equipped with a C-band Synthetic Aperture Radar (SAR) capable of acquiring high resolution (25 m) images of Earth's surface day or night and under all weather conditions. Along with the attributes familiar to researchers working with SAR data from the European Space Agency's Earth Remote Sensing Satellite and the Japanese Earth Resources Satellite, RADARSAT will have enhanced flexibility to collect data using a variety of swath widths, incidence angles and resolutions. Most importantly, for scientists interested in Antarctica, the agreement for a U.S. launch of RADARSAT includes a provision for rotating in orbit the normally right-looking SAR to a left-looking mode. This 'Antarctic Mode' will provide for the first time a nearly instantaneous, high resolution view of the entirety of Antarctica on each of two proposed mappings separated by 2 years. This is an unprecedented opportunity to finish mapping one of the few remaining uncharted regions of the Earth. The completed maps will also provide two important benchmarks for gauging changes of Antarctica's ice cover. The preparation of a digital mosaic of Antarctica is being conducted under a NASA Pathfinder Project awarded to the Byrd Polar Research Center of The Ohio State University. The primary goal of this proposal is to compile digital SAR mosaics of the entire Antarctic continent using a combination of standard and extended beams during the "Antarctic Mode" of the Radarsat Mission. Agreements with the Canadian Space Agency call for the first Antarctic Mapping Manuever to occur in September, 1997. A mission plan to coordinate that complex acquisition and downlinking of Antarctic data has been developed by NASA's Jet Propulsion Laboratory. The Alaska SAR Facility (ASF) will be used as the primary data collection site supported by collections at the Canadian Gatineau and Prince Albert Ground Stations. ASF will process data into images which will be sent to OSU for compositing into map products using state-of-the-art equipment to be designed by Vexcel Corporation of Boulder Colorado. Imaging geometry will be constrained over the Antarctic using active radar transponders constructed by the Environmental Research Institute of Michigan and by corner reflectors deployed by the British Antarctic Survey. Additional ground control is being supplied by the National Imagery and Mapping Agency. Final products will be distributed through the ASF and the National Snow and Ice Data Center which are both NASA Data Archive Centers. The mosaics and ancillary information will be prepared on CDROM and will be made available to the science community through NASA DAACs. Science opportunities envisioned for the program are summarized on the accompanying table. These include studying the dynamics and variability of the Antarctic Ice Sheet including studies of regions like the Wordie Ice Shelf and the Larsen Ice Shelf which have recently experienced unexplained and nearly catastropic retreat. Geologic applications include large scale mapping of faults, volcanic features, and mountain building processes (particularly the Transantarctic Mountains). Finally, there is simply the unprecedented opportunity to use these digital maps in studies of many previously unexplored areas of the Southern Continent.NASACanadian Space Agenc
Infiltration Route Analysis Using Thermal Observation Devices (TOD) and Optimization Techniques in a GIS Environment
Infiltration-route analysis is a military application of geospatial information system (GIS) technology. In order to find susceptible routes, optimal-path-searching algorithms are applied to minimize the cost function, which is the summed result of detection probability. The cost function was determined according to the thermal observation device (TOD) detection probability, the viewshed analysis results, and two feature layers extracted from the vector product interim terrain data. The detection probability is computed and recorded for an individual cell (50 m × 50 m), and the optimal infiltration routes are determined with A* algorithm by minimizing the summed costs on the routes from a start point to an end point. In the present study, in order to simulate the dynamic nature of a real-world problem, one thousand cost surfaces in the GIS environment were generated with randomly located TODs and randomly selected infiltration start points. Accordingly, one thousand sets of vulnerable routes for infiltration purposes could be found, which could be accumulated and presented as an infiltration vulnerability map. This application can be further utilized for both optimal infiltration routing and surveillance network design. Indeed, dynamic simulation in the GIS environment is considered to be a powerful and practical solution for optimization problems. A similar approach can be applied to the dynamic optimal routing for civil infrastructure, which requires consideration of terrain-related constraints and cost functions
Parallel Processing Method for Airborne Laser Scanning Data Using a PC Cluster and a Virtual Grid
In this study, a parallel processing method using a PC cluster and a virtual grid is proposed for the fast processing of enormous amounts of airborne laser scanning (ALS) data. The method creates a raster digital surface model (DSM) by interpolating point data with inverse distance weighting (IDW), and produces a digital terrain model (DTM) by local minimum filtering of the DSM. To make a consistent comparison of performance between sequential and parallel processing approaches, the means of dealing with boundary data and of selecting interpolation centers were controlled for each processing node in parallel approach. To test the speedup, efficiency and linearity of the proposed algorithm, actual ALS data up to 134 million points were processed with a PC cluster consisting of one master node and eight slave nodes. The results showed that parallel processing provides better performance when the computational overhead, the number of processors, and the data size become large. It was verified that the proposed algorithm is a linear time operation and that the products obtained by parallel processing are identical to those produced by sequential processing
Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation
Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy
Water Area Extraction Using RADARSAT SAR Imagery Combined with Landsat Imagery and Terrain Information
This paper exploits an effective water extraction method using SAR imagery in preparation for flood mapping in unpredictable flood situations. The proposed method is based on the thresholding method using SAR amplitude, terrain information, and object-based classification techniques for noise removal. Since the water areas in SAR images have the lowest amplitude value, the thresholding method using SAR amplitude could effectively extract water bodies. However, the reflective properties of water areas in SAR imagery cannot distinguish the occluded areas caused by steep relief and they can be eliminated with terrain information. In spite of the thresholding method using SAR amplitude and terrain information, noises which interfered with users’ interpretation of water maps still remained and the object-based classification using an object size criterion was applied for the noise removal and the criterion was determined by a histogram-based technique. When only using SAR amplitude information, the overall accuracy was 83.67%. However, using SAR amplitude, terrain information and the noise removal technique, the overall classification accuracy over the study area turned out to be 96.42%. In particular, user accuracy was improved by 46.00%
Incorporating the effect of ALS-derived DEM uncertainty for quantifying changes due to the landslide in 2011, Mt. Umyeon, Seoul
The landslide, which occurred at Umyeon mountain (Mt. Umyeon) in Seoul, Korea in 2011, was a prime example that raised awareness about the landslide in the highly urbanized area. Although many studies have been done on Umyeon landslide, there is a lack of research that detects the area where the landslide occurred and quantifies the elevation changes through remote sensing data. In this regard, this paper aims to detect and assess topographic changes quantitatively over Mt. Umyeon by using digital elevation models (DEMs) derived from airborne laser scanning (ALS) data. Since Mt. Umyeon was hilly and covered with dense trees during summer, traces of the landslide were detected by estimating the spatially distributed uncertainty of ALS-derived DEMs. The probabilistic analysis with Bayes'™ theorem considering the spatially distributed DEM of difference (DoD) uncertainty enabled to detect the landslide traces efficiently and was less affected by the influence of ALS errors. The results indicated that ALS-derived DEMs have the potential to detect landslides with their uncertainty estimation, although the ALS data were acquired in hilly and densely vegetated areas. Moreover, quantifying topographic changes due to landslides with high reliability is considered to be beneficial and practically helpful for disaster recovery