434 research outputs found
Instabilities at [110] Surfaces of d_{x^2-y^2} Superconductors
We compare different scenarios for the low temperature splitting of the
zero-energy peak in the local density of states at (110) surfaces of
d_{x^2-y^2}-wave superconductors, observed by Covington et al.
(Phys.Rev.Lett.79 (1997), 277). Using a tight binding model in the
Bogolyubov-de Gennes treatment we find a surface phase transition towards a
time-reversal symmetry breaking surface state carrying spontaneous currents and
an s+id-wave state. Alternatively, we show that electron correlation leads to a
surface phase transition towards a magnetic state corresponding to a local spin
density wave state.Comment: 4 pages, 5 figure
Quasi-particle functional Renormalisation Group calculations in the two-dimensional half-filled Hubbard model at finite temperatures
We present a highly parallelisable scheme for treating functional
Renormalisation Group equations which incorporates a quasi-particle-based
feedback on the flow and provides direct access to real-frequency self-energy
data. This allows to map out the boundaries of Fermi-liquid regimes and to
study the effect of quasi-particle degradation near Fermi liquid instabilities.
As a first application, selected results for the two-dimensional half-filled
perfectly nested Hubbard model are shown
Flow to strong coupling in the two-dimensional Hubbard model
We extend the analysis of the renormalization group flow in the
two-dimensional Hubbard model close to half-filling using the recently
developed temperature flow formalism. We investigate the interplay of d-density
wave and Fermi surface deformation tendencies with those towards d-wave pairing
and antiferromagnetism. For a ratio of next nearest to nearest neighbor
hoppings, t'/t=-0.25, and band fillings where the Fermi surface is inside the
Umklapp surface, only the d-pairing susceptibility diverges at low
temperatures. When the Fermi surface intersects the Umklapp surface close to
the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a
weaker extent, d-wave Fermi surface deformation susceptibilities grow together
when the interactions flow to strong coupling. We interpret these findings as
indications for a non-trivial strongly coupled phase with short-ranged
superconducting and antiferromagnetic correlations, in close analogy with the
spin liquid ground state in the well-understood two-leg Hubbard ladder.Comment: 8 pages, to appear in European Physical Journal
Theory of reduced singlet pairing without the underlying state of charge stripes in the high-temperature superconductor YBa_2Cu_3O_6.45
Recently, a strongly enhanced xy anisotropy of magnetic excitations was
observed in YBa_2Cu_3O_y (YBCO_y) with y=6.45 and Tc=35 K [Science 319, 597
(2008)]. Unlike the observation in YBCO_6.6 and YBCO_6.85, the anisotropy grows
to be pronounced at lower temperature and at lower energy, and is not
suppressed by the onset of superconductivity. We propose that the effect of
singlet pairing is substantially reduced in YBCO_6.45. This reduction
concomitantly enhances an order competing with singlet pairing, a strong
tendency of the so-called d-wave Pomeranchuk instability, leading to the
magnetic excitations observed experimentally.Comment: 11 pages, 4 figures, published versio
Landau-Fermi liquid analysis of the 2D t-t' Hubbard model
We calculate the Landau interaction function f(k,k') for the two-dimensional
t-t' Hubbard model on the square lattice using second and higher order
perturbation theory. Within the Landau-Fermi liquid framework we discuss the
behavior of spin and charge susceptibilities as function of the onsite
interaction and band filling. In particular we analyze the role of elastic
umklapp processes as driving force for the anisotropic reduction of the
compressibility on parts of the Fermi surface.Comment: 10 pages, 16 figure
Orbital Dependence of Quasiparticle Lifetimes in Sr2RuO4
Using a phenomenological Hamiltonian, we investigate the quasiparticle
lifetimes and dispersions in the three low energy bands, gamma, beta, and alpha
of Sr2RuO4. Couplings in the Hamiltonian are fixed so as to produce the mass
renormalization as measured in magneto-oscillation experiments. We thus find
reasonable agreement in all bands between our computed lifetimes and those
measured in ARPES experiments by Kidd et al. [1] and Ingle et al. [2]. In
comparing computed to measured quasiparticle dispersions, we however find good
agreement in the alpha-band alone.Comment: 7 pages, 5 figure
Superconductivity in the attractive Hubbard model: functional renormalization group analysis
We present a functional renormalization group analysis of superconductivity
in the ground state of the attractive Hubbard model on a square lattice.
Spontaneous symmetry breaking is treated in a purely fermionic setting via
anomalous propagators and anomalous effective interactions. In addition to the
anomalous interactions arising already in the reduced BCS model, effective
interactions with three incoming legs and one outgoing leg (and vice versa)
occur. We accomplish their integration into the usual diagrammatic formalism by
introducing a Nambu matrix for the effective interactions. From a random-phase
approximation generalized through use of this matrix we conclude that the
impact of the 3+1 effective interactions is limited, especially considering the
effective interactions important for the determination of the order parameter.
The exact hierarchy of flow equations for one-particle irreducible vertex
functions is truncated on the two-particle level, with higher-order self-energy
corrections included in a scheme proposed by Katanin. Using a parametrization
of effective interactions by patches in momentum space, the flow equations can
be integrated numerically to the lowest scales without encountering
divergences. Momentum-shell as well as interaction-flow cutoff functions are
used, including a small external field or a large external field and a
counterterm, respectively. Both approaches produce momentum-resolved order
parameter values directly from the microscopic model. The size of the
superconducting gap is in reasonable agreement with expectations from other
studies.Comment: 22 pages, 16 figures, references added, some changes in the
introductio
Renormalization Group Study of the Electron-phonon Interaction in the High Tc Cuprates
We generalize the numerical renormalization group scheme to study the
phonon-mediated retarded interactions in the high Tc cuprates. We find that
three sets of phonon-mediated retarded quasiparticle scatterings grow under RG
flow. These scatterings share the following common features: 1) the initial and
final quasiparticle momenta are in the antinodal regions, and 2) the scattering
amplitudes have a symmetry. All three sets of retarded interaction
are driven to strong coupling by the magnetic fluctuations around .
After growing strong, these retarded interaction will trigger density wave
orders with d-wave symmetry. However, due to the d-wave form factor they will
leave the nodal quasiparticle unaffected. We conclude that the main effect of
electron-phonon coupling in the cuprates is to promote these density wave
orders.Comment: 4 pages, 3 figures, references added, added more details about
others' previous studie
Competition of Fermi surface symmetry breaking and superconductivity
We analyze a mean-field model of electrons on a square lattice with two types
of interaction: forward scattering favoring a d-wave Pomeranchuk instability
and a BCS pairing interaction driving d-wave superconductivity. Tuning the
interaction parameters a rich variety of phase diagrams is obtained. If the BCS
interaction is not too strong, Fermi surface symmetry breaking is stabilized
around van Hove filling, and coexists with superconductivity at low
temperatures. For pure forward scattering Fermi surface symmetry breaking
occurs typically via a first order transition at low temperatures. The presence
of superconductivity reduces the first order character of this transition and,
if strong enough, can turn it into a continuous one. This gives rise to a
quantum critical point within the superconducting phase. The superconducting
gap tends to suppress Fermi surface symmetry breaking. For a relatively strong
BCS interaction, Fermi surface symmetry breaking can be limited to intermediate
temperatures, or can be suppressed completely by pairing.Comment: 14 pages, 10 figure
Truncated unity functional renormalization group for multiband systems with spin-orbit coupling
Although the functional renormalization group (fRG) is by now a
well-established method for investigating correlated electron systems, it is
still undergoing significant technical and conceptual improvements. In
particular, the motivation to optimally exploit the parallelism of modern
computing platforms has recently led to the development of the
"truncated-unity" functional renormalization group (TU-fRG). Here, we review
this fRG variant, and we provide its extension to multiband systems with
spin-orbit coupling. Furthermore, we discuss some aspects of the implementation
and outline opportunities and challenges ahead for predicting the ground-state
ordering and emergent energy scales for a wide class of quantum materials.Comment: consistent with published version in Frontiers in Physics (2018
- …
