4 research outputs found

    Pathological relevance of post-translationally modified alpha-synuclein (pSer87, pSer129, nTyr39) in idiopathic Parkinson’s disease and Multiple System Atrophy

    Get PDF
    Aggregated alpha-synuclein (a-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson’s disease (IPD) and multiple system atrophy (MSA), respectively. Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of a-synuclein exist, including phosphorylated and nitrated forms. It is unclear which a-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant a-synuclein PTMs in post-mortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three a-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology- affected regions of 15 PD, 5 MSA, 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 a-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures followed by nY39 a- synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 a- synuclein in MSA. Quantification of the LB scores revealed that pS129 a-synuclein was the dominant and earliest a-synuclein PTM followed by nY39 a-synuclein, while lower amounts of pSer87 a-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments

    Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant.

    Get PDF
    Since the first description of the classical presentation of progressive supranuclear palsy (PSP) in 1963, now known as Richardson's syndrome (PSP-RS), several distinct clinical syndromes have been associated with PSP-tau pathology. Like other neurodegenerative disorders, the severity and distribution of phosphorylated tau pathology are closely associated with the clinical heterogeneity of PSP variants. PSP with corticobasal syndrome presentation (PSP-CBS) was reported to have more tau load in the mid-frontal and inferior-parietal cortices than in PSP-RS. However, it is uncertain if differences exist in the distribution of tau pathology in other brain regions or if the overall tau load is increased in the brains of PSP-CBS

    Development and assessment of sensitive immuno-PCR assays for the quantification of cerebrospinal fluid three- and four-repeat tau isoforms in tauopathies.

    No full text
    Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration-tau (FTDP-17/FTLD-tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP-17 cause elevation of tau isoforms with four microtubule-binding repeat domains (4R-tau) compared to those with three repeats (3R-tau). On the basis of two well-characterised monoclonal antibodies against 3R- and 4R-tau, we developed novel, sensitive immuno-PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (n = 46), corticobasal syndrome (CBS; n = 22), AD (n = 11), Parkinson's disease with dementia (PDD; n = 16) and 35 controls revealed selective decreases of immunoreactive 4R-tau in CSF of PSP and AD patients compared with controls, and lower 4R-tau levels in AD compared with PDD. These decreases could be related to the disease-specific conformational masking of the RD4-binding epitope because of abnormal folding and/or aggregation of the 4R-tau isoforms in tauopathies or increased sequestration of the 4R-tau isoforms in brain tau pathology
    corecore