81 research outputs found
Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour
The human DOC-2/DAB2 interactive protein (hDAB2IP) gene is a novel member of the Ras GTPase-activating family and has been demonstrated to be a tumour-suppressor gene inactivated by methylation in several cancers. In this study, we analysed the methylation and expression status of hDAB2IP in gastrointestinal tumours. The promoter region of hDAB2IP was divided into two regions (m2a and m2b) based on our previous report, and the methylation status was determined by bisulphite DNA sequencing in gastric cancer cell lines. The gene expression was semiquantified by real-time RT–PCR, and the results indicated that the m2b promoter region might be an authentic methylation-mediated key regulator of the gene expression. Based on the sequence data, we developed a methylation-specific PCR (MSP) for the m2a and m2b regions and applied it to the samples. Methylation-specific PCR revealed aberrant methylation in the m2a region in eight of 12 gastric cancer cell lines (67%), 16 of 35 gastric cancer tissues (46%) and 29 of 60 colorectal cancer tissues (48%), and in the m2b region in eight of 12 cell lines (67%), 15 of 35 gastric cancer tissues (43%) and 28 of 60 colorectal cancer tissues (47%). On the other hand, seven (12%) and 11 (19%) of 59 gastrointestinal nonmalignant mucosal specimens showed methylation in the m2a and m2b regions, respectively, suggesting that hDAB2IP methylation might play a causative role in carcinogenesis. The 5-aza-2′-deoxycytidine treatment restored the gene expression in the m2b-methylated cell lines, confirming that the methylation caused gene downregulation. We also examined the relationship between hDAB2IP methylation and the clinicopathological features in patients with primary tumours, and determined that methylation in the m2b region was associated with location of the tumour in the stomach. In summary, our results demonstrated that hDAB2IP methylation is frequently present in gastrointestinal tumours and that the resulting gene silencing plays an important role in gastrointestinal carcinogenesis
DAF-2/Insulin-Like Signaling in C. elegans Modifies Effects of Dietary Restriction and Nutrient Stress on Aging, Stress and Growth
Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan.We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants.These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways
Co-Regulation of the DAF-16 Target Gene, cyp-35B1/dod-13, by HSF-1 in C. elegans Dauer Larvae and daf-2 Insulin Pathway Mutants
Insulin/IGF-I-like signaling (IIS) has both cell autonomous and non-autonomous functions. In some cases, targets through which IIS regulates cell-autonomous functions, such as cell growth and metabolism, have been identified. In contrast, targets for many non-autonomous IIS functions, such as C. elegans dauer morphogenesis, remain elusive. Here, we report the use of genomic and genetic approaches to identify potential non-autonomous targets of C. elegans IIS. First, we used transcriptional microarrays to identify target genes regulated non-autonomously by IIS in the intestine or in neurons. C. elegans IIS controls expression of a number of stress response genes, which were differentially regulated by tissue-restricted IIS. In particular, expression of sod-3, a MnSOD enzyme, was not regulated by tissue-restricted IIS on the microarrays, while expression of hsp-16 genes was rescued back to wildtype by tissue restricted IIS. One IIS target regulated non-autonomously by age-1 was cyp-35B1/dod-13, encoding a cytochrome P450. Genetic analysis of the cyp-35B1 promoter showed both DAF-16 and HSF-1 are direct regulators. Based on these findings, we propose that hsf-1 may participate in the pathways mediating non-autonomous activities of age-1 in C. elegans
Pseudomonas aeruginosa Suppresses Host Immunity by Activating the DAF-2 Insulin-Like Signaling Pathway in Caenorhabditis elegans
Some pathogens have evolved mechanisms to overcome host immune defenses by inhibiting host defense signaling pathways and suppressing the expression of host defense effectors. We present evidence that Pseudomonas aeruginosa is able to suppress the expression of a subset of immune defense genes in the animal host Caenorhabditis elegans by activating the DAF-2/DAF-16 insulin-like signaling pathway. The DAF-2/DAF-16 pathway is important for the regulation of many aspects of organismal physiology, including metabolism, stress response, longevity, and immune function. We show that intestinal expression of DAF-16 is required for resistance to P. aeruginosa and that the suppression of immune defense genes is dependent on the insulin-like receptor DAF-2 and the FOXO transcription factor DAF-16. By visualizing the subcellular localization of DAF-16::GFP fusion protein in live animals during infection, we show that P. aeruginosa–mediated downregulation of a subset of immune genes is associated with the ability to translocate DAF-16 from the nuclei of intestinal cells. Suppression of DAF-16 is mediated by an insulin-like peptide, INS-7, which functions upstream of DAF-2. Both the inhibition of DAF-16 and downregulation of DAF-16–regulated genes, such as thn-2, lys-7, and spp-1, require the P. aeruginosa two-component response regulator GacA and the quorum-sensing regulators LasR and RhlR and are not observed during infection with Salmonella typhimurium or Enterococcus faecalis. Our results reveal a new mechanism by which P. aeruginosa suppresses host immune defense
Illuminating the life of GPCRs
The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented
Radial Plasma Dynamic in Sequential Pinches
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Plasma dynamic and confinement characteristics were investigated with magnetic probes in a theta pinch operating with oscillatory current waveform and hydrogen gas at pressure between 45 and 150 mtorr. Current-sheath implosion was evident after the third half cycle until sixth half cycle when the external current has practically decayed. Each cycle starts with a trapped reversed magnetic field residual from the previous half cycle. Probe-signal fluctuations due to radial hydromagnetic oscillations were also observed. A modified snowplow model including an initial bias field and a flux-loss term gives a reasonable description of the experimental results for plasma radial dynamic and internal trapped field. Typical equilibrium-density profiles are of a hollow type with maximum density around one-third of the discharge-tube radius. Estimations from these profiles show small variation of temperature and density among half cycles in discharges at low pressure. At high-pressure regime, the temperature strongly drops in subsequent half cycles, while the density increases.371121862190Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
- …