42 research outputs found

    Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been reported that the P2Y<sub>12 </sub>receptor (P2Y<sub>12</sub>R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y<sub>12</sub>R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y<sub>12</sub>R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y<sub>12</sub>R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y<sub>12</sub>R in SGC in lingual neuropathic pain.</p> <p>Results</p> <p>The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y<sub>12</sub>R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y<sub>12</sub>R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats.</p> <p>Conclusions</p> <p>The present findings provide the first evidence that the activation of P2Y<sub>12</sub>R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.</p

    Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats.</p> <p>Results</p> <p>Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t.) injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI) cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats.</p> <p>Conclusion</p> <p>The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.</p

    Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to clarify the neural mechanisms underlying orofacial pain abnormalities after cervical spinal nerve injury. Nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) expression and astroglial cell activation in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal dorsal horn (C1-C2) neurons were analyzed in rats with upper cervical spinal nerve transection (CNX).</p> <p>Results</p> <p>The head withdrawal threshold to mechanical stimulation of the lateral facial skin and head withdrawal latency to heating of the lateral facial skin were significantly lower and shorter respectively in CNX rats compared to Sham rats. These nocifensive effects were apparent within 1 day after CNX and lasted for more than 21 days. The numbers of pERK-like immunoreactive (LI) cells in superficial laminae of Vc and C1-C2 were significantly larger in CNX rats compared to Sham rats following noxious and non-noxious mechanical or thermal stimulation of the lateral facial skin at day 7 after CNX. Two peaks of pERK-LI cells were observed in Vc and C1-C2 following mechanical and heat stimulation of the lateral face. The number of pERK-LI cells in C1-C2 was intensity-dependent and increased when the mechanical and heat stimulations of the face were increased. The decrements of head withdrawal latency to heat and head withdrawal threshold to mechanical stimulation were reversed during intrathecal (i.t.) administration of MAPK/ERK kinase 1/2 inhibitor PD98059. The area of activated astroglial cells was significantly higher in CNX rats (at day 7 after CNX). The heat and mechanical nocifensive behaviors were significantly depressed and the number of pERK-LI cells in Vc and C1-C2 following noxious and non-noxious mechanical stimulation of the face was also significantly decreased following i.t. administration of the astroglial inhibitor fluoroacetate.</p> <p>Conclusions</p> <p>The present findings have demonstrated that mechanical allodynia and thermal hyperalgesia occur in the lateral facial skin after CNX and also suggest that ERK phosphorylation of Vc and C1-C2 neurons and astroglial cell activation are involved in orofacial extraterritorial pain following cervical nerve injury.</p

    Basic research and clinical investigations of the neural basis of orofacial pain

    Get PDF
    Background: Trigeminal nerve injury or orofacial inflammation causes severe pain in the orofacial regions innervated by uninjured nerves or uninflamed tissues as well as injured or inflamed tissues. Pathological orofacial pain associated with trigeminal nerve injury or inflammation is difficult to diagnose and treat. Highlights: To develop appropriate treatments for patients with orofacial pathological pain, various animal models of trigeminal nerve injury or orofacial inflammation have been developed. Further, the possible mechanisms involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1-C2) have been studied. Conclusions: 1) Neurotransmitters released from the somata of TG neurons are involved in peripheral sensitization. 2) Neurotransmitter release from TG neurons is decreased by botulinum toxin-type A administration, suggesting that this toxin suppressed neurotransmitter release and alleviated the neuropathic pain-related behavior. 3) Altered states of glial cells and nociceptive neurons, in the Vc and C1-C2 are involved in pathological orofacial pain associated with trigeminal nerve injury or orofacial inflammation. 4) The trigeminal sensory nuclear complex, especially the trigeminal spinal subnucleus oralis, is involved in normal and pathological orofacial pain conditions after peripheral nerve injury. 5) Neuroimaging analyses have suggested functional changes in the central and peripheral nervous systems in neuropathic pain conditions

    Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection.</p> <p>Results</p> <p>Glu application to the tongue or whisker pad skin caused an enhancement of head-withdrawal reflex and extracellular signal-regulated kinase (ERK) phosphorylation in Vc-C2 neurons. Head-withdrawal reflex and ERK phosphorylation were also enhanced following cold stimulation of the tongue but not whisker pad skin in Glu-injected rats, and the head-withdrawal reflex and ERK phosphorylation were enhanced following heat stimulation of the tongue or whisker pad skin. The enhanced head-withdrawal reflex and ERK phosphorylation after heat stimulation of the tongue or whisker pad skin, and those following cold stimulation of the tongue but not whisker pad skin were suppressed following ionotropic glutamate receptor antagonists administration into the tongue or whisker pad skin. Furthermore, intrathecal administration of MEK1/2 inhibitor PD98059 caused significant suppression of enhanced head-withdrawal reflex in Glu-injected rats, heat head-withdrawal reflex in the rats with Glu injection into the tongue or whisker pad skin and cold head-withdrawal reflex in the rats with Glu injection into the tongue.</p> <p>Conclusions</p> <p>The present findings suggest that peripheral Glu receptor mechanisms may contribute to cold hyperalgesia in the tongue but not in the facial skin, and also contribute to heat hyperalgesia in the tongue and facial skin, and that the mitogen-activated protein kinase cascade in Vc-C2 neurons may be involved in these Glu-evoked hyperalgesic effects.</p

    Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    No full text
    Abstract Background In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats. Results Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t.) injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI) cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats. Conclusion The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade
    corecore