140 research outputs found

    Implementation of a new specific program for training curators at Hiroshima University

    Get PDF
    博物館法施行規則の改正に伴い,2012年4月から学芸員資格取得のために修得すべき科目が大幅に変更となった。学芸員資格取得の歴史においてはきわめて大きな変更である。本学では,これに対応するため,各学部の学芸員資格取得特定プログラムを統合し,全学の学生を対象とする新課程に移行した。本稿では,本学が新たに採用した4学期制(ターム制)を含め,今回の変更が受講や資格取得にどのような影響を及ぼしたのか,統計データの分析を通じて考察した。新課程移行の前後で,プログラム登録者数,資格取得者数は大幅に減少し,取得率も大きく低下した。こうした現象は特定の学部,分野の変化に基づくものではなく,旧課程においてプログラム登録の主体となってきた全ての学部に共通する。分析を通じて,大幅な必要単位数の増加,全学を対象としたプログラムへの変更,2学期制から4学期制(ターム制)への変更など,複数の要因が関連して,各学部における専門の修得と学芸員資格取得を両立させることが困難な状況が生じていることが推定された。As a result of the revision of Museum Law Enforcement Rules, the subjects that must be completed to acquire the curator qualification have changed significantly since April 2012, which constitutes a major change in the history of this qualification. To cope with this change, we integrated the curator qualification specific programs of each faculty into a new course for students of all universities. In this paper, through statistical data analysis, we examined the impact of this change on attendance trends, including the term system newly adopted by Hiroshima University. Before and after the transition to the new course, the number of program registrants and qualifications greatly decreased, and the acquisition rate has also declined significantly. These phenomena were not based on changes in specific faculties or fields, but are common to all faculties subject to program registration during the old course. Through this analysis, we presumed that several factors, such as the great increase in the required number of credits, the change to the program for the whole school, and the change from a two-semester system to the four-semester system, were all interrelated to each other, which make it difficult to achieve both specialized and curator qualifications.本稿は,2018年6月22日に香川大学で開催された第13回日本博物科学会で口頭発表した藤野次史・青木孝夫・清水則雄・菅村 亨・本多博之・山口富美夫・山崎博史・吉田将之「広島大学における新課程実施後の学芸員資格取得状況について」を元に,新たなデータを加えて考察したものである

    Usability of detecting delivery errors during treatment of prostate VMAT with a gantry-mounted transmission detector

    Get PDF
    Volumetric‐modulated arc therapy (VMAT) requires highly accurate control of multileaf collimator (MLC) movement, rotation speed of linear accelerator gantry, and monitor units during irradiation. Pretreatment validation and monitoring of these factors during irradiation are necessary for appropriate VMAT treatment. Recently, a gantry mounted transmission detector “Delta4 Discover® (D4D)” was developed to detect errors in delivering doses and dose distribution immediately after treatment. In this study, the performance of D4D was evaluated. Simulation plans, in which the MLC position was displaced by 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm from the clinically used original plans, were created for ten patients who received VMAT treatment for prostate cancer. Dose deviation (DD), distance‐to‐agreement (DTA), and gamma index analysis (GA) for each plan were evaluated by D4D. These results were compared to the results (DD, DTA and GA) measured by Delta4 Phantom + (D4P). We compared the deviations between the planned and measured values of the MLC stop positions A‐side and B‐side in five clinical cases of prostate VMAT during treatment and measured the GA values. For D4D, when the acceptable errors for DD, DTA, and GA were determined to be ≤3%, ≤2 mm, and ≤3%/2 mm, respectively, the minimum detectable errors in the MLC position were 2.0, 1.5, and 1.5 mm based on DD, DTA, and GA respectively. The corresponding minimum detectable MLC position errors were 2.0, 1.0, and 1.5 mm, respectively, for D4P. The deviation between the planned and measured position of MLC stopping point of prostate VMAT during treatment was stable at an average of −0.09 ± 0.05 mm, and all GA values were above 99.86%. In terms of delivering doses and dose distribution of VMAT, error detectability of D4D was comparable to that of D4P. The transmission‐type detector “D4D” is thus suitable for detecting delivery errors during irradiation

    Dram1 regulates DNA damage-induced alternative autophagy

    Get PDF
    Autophagy is an evolutionarily conserved process that degrades subcellular constituents. Mammalian cells undergo two types of autophagy; Atg5-dependent conventional autophagy and Atg5-independent alternative autophagy, and the molecules required for the latter type of autophagy are largely unknown. In this study, we analyzed the molecular mechanisms of genotoxic stress-induced alternative autophagy, and identified the essential role of p53 and damage-regulated autophagy modulator (Dram1). Dram1 was sufficient to induce alternative autophagy. In the mechanism of alternative autophagy, Dram1 functions in the closure of isolation membranes downstream of p53. These findings indicate that Dram1 plays a pivotal role in genotoxic stress-induced alternative autophagy

    Clarithromycin expands CD11b+Gr-1+ MDSC-like cells

    Get PDF
    Macrolides are used to treat various inflammatory diseases owing to their immunomodulatory properties; however, little is known about their precise mechanism of action. In this study, we investigated the functional significance of the expansion of myeloid-derived suppressor cell (MDSC)-like CD11b+Gr-1+ cells in response to the macrolide antibiotic clarithromycin (CAM) in mouse models of shock and post-influenza pneumococcal pneumonia as well as in humans. Intraperitoneal administration of CAM markedly expanded splenic and lung CD11b+Gr-1+ cell populations in naïve mice. Notably, CAM pretreatment enhanced survival in a mouse model of lipopolysaccharide (LPS)-induced shock. In addition, adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice against LPS-induced lethality via increased IL-10 expression. CAM also improved survival in post-influenza, CAM-resistant pneumococcal pneumonia, with improved lung pathology as well as decreased interferon (IFN)-γ and increased IL-10 levels. Adoptive transfer of CAM-treated CD11b+Gr-1+ cells protected mice from post-influenza pneumococcal pneumonia. Further analysis revealed that the CAM-induced CD11b+Gr-1+ cell expansion was dependent on STAT3-mediated Bv8 production and may be facilitated by the presence of gut commensal microbiota. Lastly, an analysis of peripheral blood obtained from healthy volunteers following oral CAM administration showed a trend toward the expansion of human MDSC-like cells (Lineage−HLA-DR−CD11b+CD33+) with increased arginase 1 mRNA expression. Thus, CAM promoted the expansion of a unique population of immunosuppressive CD11b+Gr-1+ cells essential for the immunomodulatory properties of macrolides

    Empirical Study on Medical Information and Communication Technology System in Dentistry in Southeast Asia

    Get PDF
    In the field of dentistry, diagnoses based on data obtained using medical imaging modalities such as digital panoramic radiography and cone beam computed tomography (CBCT) have been widely recommended for advanced dental care. In Lao People’s Democratic Republic (Laos), there are place where advanced dental imaging devices are available in only one university dental hospital. The establishment of an information and communication technology (ICT) system has been expected as telemedicine system, for sharing medical imaging data among medical institutions in Laos. Recently, regional medical cooperation using telemedicine has been developed in Japan, and medical imaging data have been provided and shared among medical institutions, by using a mobile tablet terminal application. Therefore, we have carried out the empirical research on the telemedicine system with the university in Laos. The technologies and research results from our project will be presented in this chapter

    Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation

    Get PDF
    CDC42-C末端異常症に於ける炎症病態を解明 --ゴルジ体への異常蓄積がパイリンインフラマソーム形成を過剰促進--. 京都大学プレスリリース. 2022-05-02.Mutations in the C-terminal region of the CDC42 gene cause severe neonatal-onset autoinflammation. Effectiveness of IL-1β–blocking therapy indicates that the pathology involves abnormal inflammasome activation; however, the mechanism underlying autoinflammation remains to be elucidated. Using induced-pluripotent stem cells established from patients carrying CDC42[R186C], we found that patient-derived cells secreted larger amounts of IL-1β in response to pyrin-activating stimuli. Aberrant palmitoylation and localization of CDC42[R186C] protein to the Golgi apparatus promoted pyrin inflammasome assembly downstream of pyrin dephosphorylation. Aberrant subcellular localization was the common pathological feature shared by CDC42 C-terminal variants with inflammatory phenotypes, including CDC42[*192C*24] that also localizes to the Golgi apparatus. Furthermore, the level of pyrin inflammasome overactivation paralleled that of mutant protein accumulation in the Golgi apparatus, but not that of the mutant GTPase activity. These results reveal an unexpected association between CDC42 subcellular localization and pyrin inflammasome activation that could pave the way for elucidating the mechanism of pyrin inflammasome formation

    Autophagy controls centrosome number by degrading Cep63

    Get PDF
    Centrosome number is associated with the chromosome segregation and genomic stability. The ubiquitin–proteasome system is considered to be the main regulator of centrosome number. However, here we show that autophagy also regulates the number of centrosomes. Autophagy-deficient cells carry extra centrosomes. The autophagic regulation of centrosome number is dependent on a centrosomal protein of 63 (Cep63) given that cells lacking autophagy contain multiple Cep63 dots that are engulfed and digested by autophagy in wild-type cells, and that the upregulation of Cep63 increases centrosome number. Cep63 is recruited to autophagosomes via interaction with p62, a molecule crucial for selective autophagy. In vivo, hematopoietic cells from autophagy-deficient and p62−/− mice also contained multiple centrosomes. These results indicate that autophagy controls centrosome number by degrading Cep63

    Beneficial effect of branched-chain amino acid supplementation on glycemic control in chronic hepatitis C patients with insulin resistance: Implications for type 2 diabetes

    Get PDF
    Branched-chain amino acids (BCAAs) improve disorders of albumin metabolism, quality of life, subjective symptoms, and prognosis in patients with chronic hepatitis. However, it remains unclear whether they improve insulin resistance. We examined the effects of BCAAs on glucose tolerance and insulin sensitivity in patients with chronic hepatitis C and insulin resistance. Individuals with a definitive diagnosis of chronic hepatitis C and insulin resistance were eligible for participation. Eligible participants were randomly assigned to the BCAA group or a control group. Participants were then crossed over to the other treatment for a further 12 weeks. Baseline clinical features, laboratory markers, fatty acid levels, and insulin sensitivity, assessed with oral glucose tolerance tests and a hyperinsulinemic euglycemic clamp, were also examined before and 12 and 24 weeks after the beginning of the study. Of the 27 patients who completed the study, 14 began in the BCAA group and 13 began as controls. There were no significant differences in glucose metabolism parameters or lipid profiles between the groups. HbA1c values were improved in 10 patients and worsened or remained unchanged in 17 patients. The only predictive variable for change in HbA1c was the baseline Matsuda index: the lower the index, the greater the improvement in HbA1c values. BCAA therapy did not have adverse effects on glucose tolerance or insulin sensitivity in patients with chronic hepatitis C and insulin resistance. Moreover, it had a therapeutic effect on HbA1c values in patients with marked peripheral (primarily muscle) insulin resistance. © 2012 Elsevier Inc

    DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown.</p> <p>Results</p> <p>The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation.</p> <p>Conclusion</p> <p>This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.</p
    corecore