9 research outputs found
Whole brain radiation therapy alone versus radiosurgery for patients with 1–10 brain metastases from small cell lung cancer (ENCEPHALON Trial): study protocol for a randomized controlled trial
Background: Conventional whole brain radiotherapy (WBRT) has been established as the treatment standard in patients with cerebral metastases from small-cell lung cancer (SCLC), however, it has only modest efficacy and limited prospective data is available for WBRT as well as local treatments such as stereotactic radiosurgery (SRS).
Methods/design: The present single-center prospective randomized study, conducted at Heidelberg University Hospital, compares neurocognitive function, as objectively measured by significant deterioration in Hopkins Verbal Learning Test – Revised total recall at 3 months. Fifty-six patients will be randomized to receive either SRS of all brain metastases (up to ten lesions) or WBRT. Secondary endpoints include intracranial progression (local tumor progression and number of new cerebral metastases), extracranial progression, overall survival, death due to brain metastases, local (neurological) progression-free survival, progression-free survival, changes in other cognitive performance measures, quality of life and toxicity.
Discussion: Recent evidence suggests that SRS might be a promising treatment option for SCLC patients with brain metastases. The present trial is the first to prospectively investigate the treatment response, toxicity and neurocognition of WBRT and SRS in SCLC patients.
Trial registration: Clinicaltrials.gov NCT03297788 . Registered September 29, 2017
A transplantable tumor model allowing investigation of NY-BR-1-specific T cell responses in HLA-DRB1*0401 transgenic mice
Background NY-BR-1 has been described as a breast cancer associated differentiation antigen with intrinsic immunogenicity giving rise to endogenous T and B cell responses. The current study presents the first murine tumor model allowing functional investigation of NY-BR-1-specific immune responses in vivo. Methods A NY-BR-1 expressing tumor model was established in DR4tg mice based on heterotopic transplantation of stable transfectant clones derived from the murine H2 compatible breast cancer cell line EO771. Composition and phenotype of tumor infiltrating immune cells were analyzed by qPCR and FACS. MHC I binding affinity of candidate CTL epitopes predicted in silico was determined by FACS using the mutant cell line RMA-S. Frequencies of NY-BR-1 specific CTLs among splenocytes of immunized mice were quantified by FACS with an epitope loaded D-b-dextramer. Functional CTL activity was determined by IFN gamma catch or IFN gamma ELISpot assays and statistical analysis was done applying the Mann Whitney test. Tumor protection experiments were performed by immunization of DR4tg mice with replication deficient recombinant adenovirus followed by s.c. challenge with NY-BR-1 expressing breast cancer cells. Results Our results show spontaneous accumulation of CD8(+) T cells and F4/80(+) myeloid cells preferentially in NY-BR-1 expressing tumors. Upon NY-BR-1-specific immunization experiments combined with in silico prediction and in vitro binding assays, the first NY-BR-1-specific H2-D-b-restricted T cell epitope could be identified. Consequently, flow cytometric analysis with fluorochrome conjugated multimers showed enhanced frequencies of CD8(+) T cells specific for the newly identified epitope in spleens of immunized mice. Moreover, immunization with Ad.NY-BR-1 resulted in partial protection against outgrowth of NY-BR-1 expressing tumors and promoted intratumoral accumulation of macrophages. Conclusion This study introduces the first H2-D-b-resctricted CD8(+) T cell epitope-specific for the human breast cancer associated tumor antigen NY-BR-1. Our novel, partially humanized tumor model enables investigation of the interplay between HLA-DR4-restricted T cell responses and CTLs within their joint attack of NY-BR-1 expressing tumors
Carbon ion reirradiation compared to intensity-modulated re-radiotherapy for recurrent head and neck cancer (CARE): a randomized controlled trial
Background!#!Intensity-modulated re-radiotherapy (reIMRT) has been established as a standard local treatment option in patients with non-resectable, recurrent head and neck cancer (rHNC). However, the clinical outcome is unfavorable and severe toxicities (≥grade III) occurred in 30-40% of patients. The primary aim of the current trial is to investigate carbon ion reirradiation (reCIRT) compared to reIMRT in patients with rHNC regarding safety/toxicity as well as local control, overall survival (OS), and quality of life (QoL).!##!Methods!#!The present trial will be performed as a single center, two-armed, prospective phase II study. A maximum of 72 patients will be treated with either reIMRT or reCIRT to evaluate severe (≥grade III) treatment-related toxicities (randomization ratio 1:1). The primary target value is to generate less than 35% acute/subacute severe toxicity (≥grade III), according to the Common Terminology Criteria for Adverse Events v5.0, within 6 months after study treatment. The total dose of reirradiation will range between 51 and 60 Gy or Gy (RBE), depending primarily on the radiotherapy interval and the cumulative dose to organs at risk. Individual dose prescription will be at the discretion of the treating radiation oncologist. The local and distant progression-free survival 12 months after reirradiation, the OS, and the QoL are the secondary endpoints of the trial. Explorative trial objectives are the longitudinal investigation of clinical patient-related parameters, tumor parameters on radiological imaging, and blood-based tumor analytics.!##!Discussion!#!Recent retrospective studies suggested that reCIRT could represent a feasible and effective treatment modality for rHNC. This current randomized prospective trial is the first to investigate the toxicity and clinical outcome of reCIRT compared to reIMRT in patients with rHNC.!##!Trial registration!#!ClinicalTrials.gov ; NCT04185974 ; December 4th 2019
3D-printed individualized tooth-borne tissue retraction devices compared to conventional dental splints for head and neck cancer radiotherapy: a randomized controlled trial
Background!#!Despite modern treatment techniques, radiotherapy (RT) in patients with head and neck cancer (HNC) may be associated with high rates of acute and late treatment-related toxicity. The most effective approach to reduce sequelae after RT is to avoid as best as possible healthy tissues and organs at risk from the radiation target volume. Even small geometric changes can lead to a significant dose reduction in normal tissue and better treatment tolerability. The major objective of the current study is to investigate 3D printed, tooth-borne tissue retraction devices (TRDs) compared to conventional dental splints for head and neck RT.!##!Methods!#!In the current two-arm randomized controlled phase II trial, a maximum of 34 patients with HNC will be enrolled. Patients will receive either TRDs or conventional dental splints (randomization ratio 1:1) for the RT. The definition of the target volume, modality, total dose, fractionation, and imaging guidance is not study-specific. The primary endpoint of the study is the rate of acute radiation-induced oral mucositis after RT. The quality of life, local control and overall survival 12Â months after RT are the secondary endpoints. Also, patient-reported outcomes and dental status, as well as RT plan comparisons and robustness analyzes, will be assessed as exploratory endpoints. Finally, mesenchymal stem cells, derived from the patients' gingiva, will be tested in vitro for regenerative and radioprotective properties.!##!Discussion!#!The preliminary clinical application of TRD showed a high potential for reducing acute and late toxicity of RT in patients with HNC. The current randomized study is the first to prospectively investigate the clinical tolerability and efficacy of TRDs for radiation treatment of head and neck tumors.!##!Trial registration!#!ClinicalTrials.gov; NCT04454697; July
Ansprechraten und Rezidivmuster nach Niedrigdosis-Bestrahlung mit 4 Gy bei Patienten mit indolenten Lymphomen
Retrospective study of effectiveness, toxicity, and relapse patterns after low-dose radiotherapy (LDRT) in patients with low-grade lymphomas
Additional file 1: of Whole brain radiation therapy alone versus radiosurgery for patients with 1–10 brain metastases from small cell lung cancer (ENCEPHALON Trial): study protocol for a randomized controlled trial
SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*. (PDF 205 kb