7 research outputs found

    Immunomodulation of antiretroviral drug-suppressed chronic HIV-1 infection in an oral probiotic double-blind placebo-controlled trial.

    No full text
    A putative source of inappropriate immune activation that drives human immunodeficiency virus (HIV)-1 immunopathogenesis is the gastrointestinal tract. Even with effective antiretroviral treatment, residual activation persists. We hypothesized that an oral probiotic could improve the residual immune activation in chronic treated HIV-1 infection, and tested a Bacillus coagulans GBI-30, 6086 capsule probiotic in HIV-1-infected persons with suppressed viremia on stable antiretroviral therapy in a 3-month double-blind placebo-controlled trial (10 probiotic, 7 placebo). The Gastrointestinal Symptom Rating Scale (GSRS) was administered monthly. Blood was tested at the start and end of placebo/probiotic administration for viremia, CD4(+) T cell percentage/concentration, soluble (s)CD14, soluble intestinal fatty acid binding protein, sCD163, D-dimer, C-reactive protein (CRP), interleukin-8, and tumor necrosis factor-α. All participants maintained viremia <40 RNA copies/ml. The probiotic was safe and well tolerated, and appeared to improve chronic gastrointestinal symptoms. Its administration was associated with a significant increase in the percentage of blood CD4(+) T cells compared to placebo (+2.8% versus -1.8%, p=0.018) although CD4(+) T cell concentrations were generally unchanged in both groups. None of the biomarkers showed significant changes on probiotic treatment or between-group differences in change (although significance was borderline for a greater sCD163 drop in the probiotic versus placebo group, p=0.05). Some biomarkers showed significant correlations to each other, particularly D-dimer with CRP and sCD14 with tumor necrosis factor (TNF)-α. These data demonstrate the safety and possible benefit of this probiotic for residual inflammation in treated HIV-1 infection, although further study will be required to determine the immune pathways involved

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection

    Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34 + cells

    Get PDF
    Gene transfer has potential as a once-only treatment that reduces viral load, preserves the immune system and avoids lifetime highly active antiretroviral therapy. This study, which is to our knowledge the first randomized, double-blind, placebo-controlled, phase 2 cell-delivered gene transfer clinical trial, was conducted in 74 HIV-1-infected adults who received a tat-vpr-specific anti-HIV ribozyme (OZ1) or placebo delivered in autologous CD34+ hematopoietic progenitor cells. There were no OZ1-related adverse events. There was no statistically significant difference in viral load between the OZ1 and placebo group at the primary end point (average at weeks 47 and 48), but time-weighted areas under the curve from weeks 40-48 and 40-100 were significantly lower in the OZ1 group. Throughout the 100 weeks, CD4+ lymphocyte counts were higher in the OZ1 group. This study indicates that cell-delivered gene transfer is safe and biologically active in individuals with HIV and can be developed as a conventional therapeutic product
    corecore