2,063 research outputs found

    OGO-3 observations of ELF noise in the magnetosphere - Part 1 - Spatial extent and frequency of occurrence

    Get PDF
    OGO-3 spectrum analyzer measurements of magnetic noise in magnetospher

    A study of waves in the earth's bow shock

    Get PDF
    The perturbation vectors of waves up and downstream from the region of maximum compression in the bow shock were examined on OGO-5 under particularly steady solar wind conditions. The polarization of the upstream waves was RH, circular and of the downstream waves LH, elliptical in the spacecraft frame. By observing that the polarization of the waves remained unchanged as the shock motion swept the wave structure back and forth across the satellite three times in eight minutes, it was found that the waves were not stationary in the shock frame. A study of the methods of determining the shock normal indicates that the normal estimated from a shock model should be superior to one based upon magnetic coplanarity. The propagation vectors of the waves examined did not coincide with the shock model normal, the average magnetic field, or the plasma flow velocity. However, the major axis of the polarization ellipse of the downstream wave was nearly parallel to the upstream propagation vector

    Collisionless solar wind protons: A comparison of kinetic and hydrodynamic descriptions

    Get PDF
    Kinetic and hydrodynamic descriptions of a collisionless solar wind proton gas are compared. Heat conduction and viscosity are neglected in the hydrodynamic formulation but automatically included in the kinetic formulation. The results of the two models are very nearly the same, indicating that heat conduction and viscosity are not important in the solar wind proton gas beyond about 0.1 AU. It is concluded that the hydrodynamic equations provide a valid description of the collisionless solar wind protons, and hence that future models of the quiet solar wind should be based on a hydrodynamic formulation

    The acceleration and propagation of solar flare energetic particles

    Get PDF
    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented

    Measurements of heavy ion beam losses from collimation

    Get PDF
    The collimation efficiency for Pb ion beams in the LHC is predicted to be lower than requirements. Nuclear fragmentation and electromagnetic dissociation in the primary collimators create fragments with a wide range of Z/A ratios, which are not intercepted by the secondary collimators but lost where the dispersion has grown sufficiently large. In this article we present measurements and simulations of loss patterns generated by a prototype LHC collimator in the CERN SPS. Measurements were performed at two different energies and angles of the collimator. We also compare with proton loss maps and find a qualitative difference between Pb ions and protons, with the maximum loss rate observed at different places in the ring. This behavior was predicted by simulations and provides a valuable benchmark of our understanding of ion beam losses caused by collimation.Comment: 12 pages, 20 figure

    Low temperature dynamics of kinks on Ising interfaces

    Full text link
    The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensions (2d) a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up vertically on the physical 2d lattice, then execute hard-core biased random walks on a transformed 1d lattice. Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for the interface velocity v = M[(gamma + gamma'')kappa + H]$, where M, gamma + gamma'', and kappa are the interface mobility, stiffness, and curvature, respectively. In 3d, we obtain the velocity of a curved interface near the orientation from an analysis of the self-similar evolution of 2d shrinking terraces. We show that this velocity is consistent with the one predicted from the 3d tensorial generalization of the law for anisotropic curvature-driven motion. In this generalization, both the interface stiffness tensor and the curvature tensor are singular at the orientation. However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this kink-based kinetic description provides a useful framework for studying more complex situations by modeling the effect of immobile dilute impurities.Comment: 11 pages, 10 figure

    Generation of 1.5 Million Beam Loss Threshold Values

    Get PDF
    CERN's Large Hadron Collider will store an unprecedented amount of energy in its circulating beams. Beamloss monitoring (BLM) is, therefore, critical for machine protection. It must protect against the consequences (equipment damage, quenches of superconducting magnets) of excessive beam loss. About 4000 monitors will be installed at critical loss locations. Each monitor has 384 beam abort thresholds associated; for 12 integrated loss durations (40ÎĽ40\mus to 83 s) and 32 energies (450GeV to 7 TeV). Depending on monitor location, the thresholds vary by orders of magnitude. For simplification, the monitors are grouped in 'families'. Monitors of one family protect similar magnets against equivalent loss scenarios. Therefore, they are given the same thresholds. The start-up calibration of the BLM system is required to be within a factor of five in accuracy; and the final accuracy should be a factor of two. Simulations (backed-up by control measurements) determine the relation between the BLM signal, the deposited energy and the critical energy deposition for damage or quench (temperature of the coil). The paper presents the strategy of determining 1.5 million threshold values

    Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lafutidine is a histamine H<sub>2 </sub>receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg) modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge.</p> <p>Methods</p> <p>Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg) or cimetidine (10 mg/kg), and 30 min later their stomachs were exposed to exogenous HCl (0.25 M). During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry.</p> <p>Results</p> <p>Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H<sub>2 </sub>receptor antagonist cimetidine had similar but weaker effects.</p> <p>Conclusion</p> <p>These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H<sub>2 </sub>receptor antagonists can protect the gastric mucosa from acid injury independently of their ability to suppress gastric acid secretion.</p

    Hadron Coolers at CERN

    Get PDF
    To provide efficient deceleration and to produce antiproton beam with the required characteristics two different cooler systems (stochastic and electron) are used in operation on the AD (Antiproton Decelerator) machine. In a near future, an electron cooling system will be used in LEIR (Low Energy Ion Ring) to accumulate ions for LHC. This system will be used for a fast ion beam cooling and stacking. These cooling systems are described
    • …
    corecore