216 research outputs found

    Purification and characterization of a novel human 15 kd cholesterol crystallization inhibitor protein in bile

    Get PDF
    Crystallization-inhibiting proteins can explain longer nucleation times associated with bile from gallstone-free subjects as compared with bile from patients with cholesterol gallstones. We partially characterized and examined the crystallization inhibitory potency of a newly purified 15 kd human biliary protein. Gallbladder bile was passed through an anti-apolipoprotein A-I (apo A-I) immunoaffinity column to extract lipid-associaied proteins. The bound fraction was separated by 30 kd ultrafiltration. Sodium dodecyl sulfate-polyacrylamide gel electrophesis (SDS-PAGE) was performed under nonreducing and reducing conditions. Cholesterol crystallization activity was tested in a photometric cholesterol crystal growth assay. Isoelectric focusing was performed by using a standard gel, The purified 15 kd protein was subjected to N-terminal amino acid sequencing, Although the whole apo A-I-bound fraction contained a variety of proteins and lipids, its 30 kd filtrate yielded a nearly pure 15 kd protein with only minor contamination from apo A-I. Amino acid sequencing showed that the protein was unique. Enzymatic deglycosylation revealed no evidence for glycosylation. At a protein concentration of 10 mu g/ml, crystallization time was delayed as compared with control and apo A-I, and final crystal mass was reduced to 75% of control, Its isoelectric point was 6.1 without isoforms, Under nonreducing conditions, the protein formed a 30 kd dimer and a 60 kd tetramer. We conclude that this protein is a novel potent biliary crystallization inhibitor protein

    BILIARY HAPTOGLOBIN, A POTENT PROMOTER OF CHOLESTEROL CRYSTALLIZATION AT PHYSIOLOGICAL CONCENTRATIONS

    Get PDF
    Background/Aims: Several proteins present in human bile have been reported to promote cholesterol crystallization and thus are potentially important in the formation of cholesterol crystals as the initial stage in gallstone pathogenesis. To be physiologically relevant, such proteins must either be present in high concentration in bile or have a potent promoting activity. The current study explored several of the more abundant but unexamined biliary proteins based upon their also having sufficiently high serum concentrations that antibodies were available for both their isolation and quantitation. Methods: Protein purification was accomplished by immunoaffinity chromatography of bile followed by delipidation. Con A affinity chromatography of bile was used to obtain the bound fraction, a portion of which was delipidated. Crystallization-promoting activity of both the purified proteins and Con A-bound glycoprotein fractions (CABG) was measured by a photometric crystal growth assay. A competitive antibody-capture ELISA assay was developed to measure concentrations of alpha(1)-antitrypsin, transferrin, and haptoglobin in native bile. Results: At their relevant physiological concentrations, biliary haptoglobin (15 mu g/ml) had a crystallization-promoting activity twice that of the biliary IgM (75 mu g/ml) used as a reference standard (P < 0.05). Biliary transferrin (20 mu g/ml) had only modest promoting activity (P < 0.05). Biliary alpha(1)-antitrypsin (50 mu g/ml), by contrast, showed no promoting activity. Delipidation of the CABG fraction decreased its promoting activity by 75%. Biliary haptoglobin accounts for about 30% of delipidated total CABG-promoting activity. Conclusions: Biliary haptoglobin at its physiological concentration has a highly potent crystallization-promoting activity and thus becomes a candidate for major attention in understanding gallstone pathogenesis. Biliary lipids associated with CABG account for a major portion of the cholesterol-crystallization-promoting activity of this fraction

    Human gallbladder mucosal function : effects on intraluminal fluid and lipid composition in health and disease.

    Get PDF
    Abstract: Gallbladder mucosal absorption of fluid during fasting is a well-known process. Indirect in vivo and recent in vitro evidence for physiologically relevant gallbladder absorption of cholesterol and phospholipids from bile has been observed in humans. The present study explored and compared by indirect means the relative efficiences of human gallbladder mucosal absorption of fluid and lipids in health and disease. Biliary lipids and pigment content were measured in fasting gallbladder bile samples obtained from gallstone-free controls and from four study groups: multiple and solitary cholesterol gallstone patients, and morbidly obese subjects with and without gallstones. Bile salts and pigment content were significantly greater in gallstone-free controls than in all other disease study groups, This was interpreted as evidence of more effective gallbladder mucosal fluid absorption in nonobese gallstone-free controls compared to that in all other groups, Correlation plot analyses of biliary lipids showed lower concentrations of phospholipids than expected from the index bile salt concentrations, The same was found for cholesterol concentrations but only in supersaturated samples, These findings were much more pronounced in gallstone free-controls and were accordingly interpreted as evidence of more efficient gallbladder absorption of both phospholipids and cholesterol in controls compared with that found in each of the disease study groups, Moreover, impaired gallbladder mucosal function, while invariably associated with cholesterol gallstone disease, was not found to be a necessary consequence of the physical presence of stones. It is concluded that efficient gallbladder mucosal absorption of both fluid and apolar lipids from bile is a normal physiological process that is often seriously impaired in the presence of either cholesterol gallstone disease or at least one of its precursor forms

    Availability and quality of paraffin blocks identified in pathology archives: A multi-institutional study by the Shared Pathology Informatics Network (SPIN)

    Get PDF
    BACKGROUND: Shared Pathology Informatics Network (SPIN) is a tissue resource initiative that utilizes clinical reports of the vast amount of paraffin-embedded tissues routinely stored by medical centers. SPIN has an informatics component (sending tissue-related queries to multiple institutions via the internet) and a service component (providing histopathologically annotated tissue specimens for medical research). This paper examines if tissue blocks, identified by localized computer searches at participating institutions, can be retrieved in adequate quantity and quality to support medical researchers. METHODS: Four centers evaluated pathology reports (1990–2005) for common and rare tumors to determine the percentage of cases where suitable tissue blocks with tumor were available. Each site generated a list of 100 common tumor cases (25 cases each of breast adenocarcinoma, colonic adenocarcinoma, lung squamous carcinoma, and prostate adenocarcinoma) and 100 rare tumor cases (25 cases each of adrenal cortical carcinoma, gastro-intestinal stromal tumor [GIST], adenoid cystic carcinoma, and mycosis fungoides) using a combination of Tumor Registry, laboratory information system (LIS) and/or SPIN-related tools. Pathologists identified the slides/blocks with tumor and noted first 3 slides with largest tumor and availability of the corresponding block. RESULTS: Common tumors cases (n = 400), the institutional retrieval rates (all blocks) were 83% (A), 95% (B), 80% (C), and 98% (D). Retrieval rate (tumor blocks) from all centers for common tumors was 73% with mean largest tumor size of 1.49 cm; retrieval (tumor blocks) was highest-lung (84%) and lowest-prostate (54%). Rare tumors cases (n = 400), each institution's retrieval rates (all blocks) were 78% (A), 73% (B), 67% (C), and 84% (D). Retrieval rate (tumor blocks) from all centers for rare tumors was 66% with mean largest tumor size of 1.56 cm; retrieval (tumor blocks) was highest for GIST (72%) and lowest for adenoid cystic carcinoma (58%). CONCLUSION: Assessment shows availability and quality of archival tissue blocks that are retrievable and associated electronic data that can be of value for researchers. This study serves to compliment the data from which uniform use of the SPIN query tools by all four centers will be measured to assure and highlight the usefulness of archival material for obtaining tumor tissues for research

    Cognitive Information Processing

    Get PDF
    Contains goals, background, research activities on one research project and reports on three research projects.Center for Advanced Television StudiesAmerican Broadcasting CompanyAmpex CorporationColumbia Broadcasting SystemsHarris CorporationHome Box OfficePublic Broadcasting ServiceNational Broadcasting CompanyRCA CorporationTektronix3M CompanyProvidence Gravure Co. (Grant)International Business Machines, Inc

    Enhanced Collateral Growth by Double Transplantation of Gene-Nucleofected Fibroblasts in Ischemic Hindlimb of Rats

    Get PDF
    BACKGROUND: Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy. METHODS AND RESULTS: Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed. CONCLUSIONS: These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases

    Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Different Classes of Antidepressants

    Get PDF
    Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects
    • …
    corecore