1,856 research outputs found

    A Sunyaev-Zel'dovich Effect Survey for High Redshift Clusters

    Get PDF
    Interferometric observations of the Sunyaev-Zel'dovich Effect (SZE) toward clusters of galaxies provide sensitive cosmological probes. We present results from 1 cm observations (at BIMA and OVRO) of a large, intermediate redshift cluster sample. In addition, we describe a proposed, higher sensitivity array which will enable us to survey large portions of the sky. Simulated observations indicate that we will be able to survey one square degree of sky per month to sufficient depth that we will detect all galaxy clusters more massive than 2x10^{14} h^{-1}_{50}M_\odot, regardless of their redshift. We describe the cluster yield and resulting cosmological constraints from such a survey.Comment: 7 pages, 6 figures, latex, contribution to VLT Opening Symposiu

    Imaging the Sunyaev-Zel'dovich Effect

    Get PDF
    We report on results of interferometric imaging of the Sunyaev-Zel'dovich Effect (SZE) with the OVRO and BIMA mm-arrays. Using low-noise cm-wave receivers on the arrays, we have obtained high quality images for 27 distant galaxy clusters. We review the use of the SZE as a cosmological tool. Gas mass fractions derived from the SZE data are given for 18 of the clusters, as well as the implied constraint on the matter density of the universe, ΩM\Omega_M. We find ΩMh1000.220.03+0.05\Omega_M h_{100} \le 0.22 ^{+0.05}_{-0.03}. A best guess for the matter density obtained by assuming a reasonable value for the Hubble constant and also by attempting to account for the baryons contained in the galaxies as well as those lost during the cluster formation process gives ΩM0.25\Omega_M \sim 0.25. We also give preliminary results for the Hubble constant. Lastly, the power for investigating the high redshift universe with a non-targeted high sensitivity SZE survey is discussed and an interferometric survey is proposed.Comment: 14 pages, 7 figures, latex, contribution to Nobel Symposium "Particle Physics and the Universe" to appear in Physica Scripta and World Scientific, eds L. Bergstrom, P. Carlson and C. Fransso

    The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films

    Full text link
    The anisotropy of the critical current density Jc depends in general on both the properties of the flux lines (such as line tension, coherence length and penetration depth) and the properties of the defects (such as density, shape, orientation etc.). Whereas the Jc anisotropy in microstructurally clean films can be scaled to an effective magnetic field containing the Ginzburg-Landau anisotropy term, it is in general not possible (or only in a limited field range) for samples containing extended defects. Here, the Jc anisotropy of a Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e. grain boundaries created by 45{\deg} in-plane rotated grains, as well as extended Fe particles is investigated. This microstructure leads to c-axis correlated pinning, both due to the GBs and the Fe particles and manifests in a c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full Jc anisotropy is fitted successfully with the vortex path model. The results are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for publication in Advances in Cryogenic Engineering (Materials

    Scaling behaviour of the critical current in clean epitaxial Ba(Fe1-xCox)2As2 thin films

    Full text link
    The angular-dependent critical current density, Jc(theta), and the upper critical field, Hc2(theta), of epitaxial Ba(Fe1-xCox)2As2 thin films have been investigated. No Jc(theta) peaks for H || c were observed regardless of temperatures and magnetic fields. In contrast, Jc(theta) showed a broad maximum at theta=90 degree, which arises from intrinsic pinning. All data except at theta=90 degree can be scaled by the Blatter plot. Hc2(theta) near Tc follows the anisotropic Ginzburg-Landau expression. The mass anisotropy increased from 1.5 to 2 with increasing temperature, which is an evidence for multi-band superconductivity.Comment: Accepted in Physical Review B rapid communication
    corecore