36 research outputs found

    Valence electron concentration- and N vacancy-induced elasticity in cubic early transition metal nitrides

    Full text link
    Motivated by frequently reported deviations from stoichiometry in cubic transition metal nitride (TMNx) thin films, the effect of N-vacancy concentration on the elastic properties of cubic TiNx, ZrNx, VNx, NbNx, and MoNx (0.72<x<1.00) is systematically studied by density functional theory (DFT) calculations. The predictions are validated experimentally for VNx (0.77<x<0.97). The DFT results indicate that the elastic behavior of the TMNx depends on both the N-vacancy concentration and the valence electron concentration (VEC) of the transition metal: While TiNx and ZrNx exhibit vacancy-induced reductions in elastic modulus, VNx and NbNx show an increase. These trends can be rationalized by considering vacancy-induced changes in elastic anisotropy and bonding. While introduction of N-vacancies in TiNx results in a significant reduction of elastic modulus along all directions and a lower average bond strength of Ti-N, the vacancy-induced reduction in [001] direction of VNx is overcompensated by the higher stiffness along [011] and [111] directions, resulting in a higher average bond strength of V-N. To validate the predicted vacancy-induced changes in elasticity experimentally, close-to-single-crystal VNx (0.77<x<0.97) are grown on MgO(001) substrates. As the N-content is reduced, the relaxed lattice parameter a0, as probed by X-ray diffraction, decreases from 4.128 A to 4.096 A. This reduction in lattice parameter is accompanied by an anomalous 11% increase in elastic modulus, as determined by nanoindentation. As the experimental data agree with the predictions, the elasticity enhancement in VNx upon N-vacancy formation can be understood based on the concomitant changes in elastic anisotropy and bonding.Comment: 30 pages, 8 figures in the manuscript, 1 figure in supplementary material

    Large-area deposition of protective (Ti,Al)N coatings onto polycarbonate

    Full text link
    Polycarbonate (PC) and protective (Ti,Al)N coatings exhibit extremely different material properties, specifically crystal structure, thermal stability, elastic and plastic behavior as well as thermal expansion coefficients. These differences present formidable challenges for the deposition process development as low-temperature synthesis routes have to be explored to avoid a thermal overload of the polymer substrate. Here, a large-area sputtering process is developed to address the challenges by systematically adjusting target peak power density and duty cycle. Adhering (Ti,Al)N coatings with a critical residual tensile stress of 2.2 +/- 0.2 GPa are obtained in the pulsed direct current magnetron sputtering range, whereas depositions at higher target peak power densities, realized by high power pulsed magnetron sputtering, lead to stress-induced adhesive and/or cohesive failure. The stress-optimized (Ti,Al)N coatings deposited onto PC with a target peak power density of 0.036 kW cm-2 and a duty cycle of 5.3% were investigated by cross-cut test confirming adhesion. By investigating the bond formation at the PC | (Ti,Al)N interface, mostly interfacial CNx bonds and a small fraction of (C-O)-(Ti,Al) bonds are identified by X-ray photoelectron spectroscopy, indicating reactions at the hydrocarbon and the carbonate groups during deposition. Nanoindentation reveals an elastic modulus of 296 +/- 18 GPa for the (Ti,Al)N coating, while a Ti-Al-O layer is formed during electrochemical impedance spectroscopy in a borate buffer solution, indicating protective passivation. This work demonstrates that the challenge posed by the extremely different material properties at the interface of soft polymer substrates and hard coatings can be addressed by systematical variation of the pulsing parameters to reduce the residual film stress

    The Roles of Impurities and Surface Area on Thermal Stability and Oxidation Resistance of BN Nanoplatelets

    Get PDF
    This study considers the influence of purity and surface area on the thermal and oxidation properties of hexagonal boron nitride (h-BN) nanoplatelets, which represent crucial factors in hightemperature oxidizing environments. Three h-BN nanoplatelet-based materials, synthesized with different purity levels and surface areas (~3, ~56, and ~140 m2/g), were compared, including a commercial BN reference. All materials were systematically analyzed by various characterization techniques, including gas pycnometry, scanning electron microscopy, X-ray diffraction, Fouriertransform infrared radiation, X-ray photoelectron spectroscopy, gas sorption analysis, and thermal gravimetric analysis coupled with differential scanning calorimetry. Results indicated that the thermal stability and oxidation resistance of the synthesized materials were improved by up to ~13.5% (or by 120 ◦C) with an increase in purity. Furthermore, the reference material with its high purity and low surface area (~4 m2/g) showed superior performance, which was attributed to the minimized reactive sites for oxygen diffusion due to lower surface area availability and fewer possible defects, highlighting the critical roles of both sample purity and accessible surface area in h-BN thermooxidative stability. These findings highlight the importance of focusing on purity and surface area control in developing BN-based nanomaterials, offering a path to enhance their performance in extreme thermal and oxidative conditions

    Purity and surface area: Key factors on thermal stability and oxidation resistance of BN nanoplatelets

    Get PDF
    Program and book of abstracts / 2nd International Conference on Innovative Materials in Extreme Conditions i. e. (IMEC2024), 20-22 March 2024 Belgrade, Serbia

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    Simulation study for the future IceCube-Gen2 surface array

    Get PDF
    corecore