35 research outputs found
Lymphatic mapping and sentinel node biopsy in gynecological cancers: a critical review of the literature
Although it does not have a long history of sentinel node evaluation (SLN) in female genital system cancers, there is a growing number of promising study results, despite the presence of some aspects that need to be considered and developed. It has been most commonly used in vulvar and uterine cervivcal cancer in gynecological oncology. According to these studies, almost all of which are prospective, particularly in cases where Technetium-labeled nanocolloid is used, sentinel node detection rate sensitivity and specificity has been reported to be 100%, except for a few cases. In the studies on cervical cancer, sentinel node detection rates have been reported around 80–86%, a little lower than those in vulva cancer, and negative predictive value has been reported about 99%. It is relatively new in endometrial cancer, where its detection rate varies between 50 and 80%. Studies about vulvar melanoma and vaginal cancers are generally case reports. Although it has not been supported with multicenter randomized and controlled studies including larger case series, study results reported by various centers around the world are harmonious and mutually supportive particularly in vulva cancer, and cervix cancer. Even though it does not seem possible to replace the traditional approaches in these two cancers, it is still a serious alternative for the future. We believe that it is important to increase and support the studies that will strengthen the weaknesses of the method, among which there are detection of micrometastases and increasing detection rates, and render it usable in routine clinical practice
Relative and Absolute Reliability of Physical Function Measures in People with End-Stage Renal Disease
Purpose: End-stage renal disease (ESRD) is a condition affecting multiple physiological systems, leading to a decline in physical function. Effectiveness of therapeutic interventions in people with ESRD has been assessed using various functional and activity outcome measures. The purpose of this study was to determine the relative and absolute reliability of the 6-minute walk test (6MWT), timed sit-to-stand in 30 seconds (TSS30), and maximal and adjusted activity scores (MAS-HAP, AAS-HAP) of the Human Activity Profile (HAP) in people with ESRD
Recommended from our members
The amazon dense gnss meteorological network a new approach for examining water vapor and deep convection interactions in the tropics
The Amazon Dense Global Navigational Satellite System (GNSS) Meteorological Network ((ADGMN) provides high spatiotemporal resolution, all-weather precipitable water vapor for studying the evolution of continental tropical and sea-breeze convective regimes of Amazonia. The ADGMN campaign consisted of two experiments: a 6-week campaign in and around Belem, which coincided with the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) and a 1-yr campaign in and around Manaus. The Belem network was composed of 15 GNSS/meteorological stations that provided high-frequency (5 min) PWV data as well as surface meteorological variables For the 6-week duration of the Belem experiment, days were categorized as convective (22 days) or nonconvective (19 days) based solely on a minimum cloud-top temperature of 240 K or below over the central portion of the network and a report of precipitation at at least one site during the afternoon or evening. The Manaus network commenced in April 2011 with 12 GNSS meteorological stations. Local circulations in Manaus driven by anthropogenic deforestation have, in particular, received attention
Recommended from our members
The amazon dense gnss meteorological network a new approach for examining water vapor and deep convection interactions in the tropics
The Amazon Dense Global Navigational Satellite System (GNSS) Meteorological Network ((ADGMN) provides high spatiotemporal resolution, all-weather precipitable water vapor for studying the evolution of continental tropical and sea-breeze convective regimes of Amazonia. The ADGMN campaign consisted of two experiments: a 6-week campaign in and around Belem, which coincided with the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) and a 1-yr campaign in and around Manaus. The Belem network was composed of 15 GNSS/meteorological stations that provided high-frequency (5 min) PWV data as well as surface meteorological variables For the 6-week duration of the Belem experiment, days were categorized as convective (22 days) or nonconvective (19 days) based solely on a minimum cloud-top temperature of 240 K or below over the central portion of the network and a report of precipitation at at least one site during the afternoon or evening. The Manaus network commenced in April 2011 with 12 GNSS meteorological stations. Local circulations in Manaus driven by anthropogenic deforestation have, in particular, received attention