10 research outputs found

    Running out of lithium? A route to differentiate between capacity losses and active lithium losses in lithium-ion batteries

    No full text
    Active lithium loss (ALL) resulting in a capacity loss (QALL), which is caused by lithium consuming parasitic reactions like SEI formation, is a major reason for capacity fading and, thus, for a reduction of the usable energy density of lithium-ion batteries (LIBs). QALL is often equated with the accumulated irreversible capacity (QAIC). However, QAIC is also influenced by non-lithium consuming parasitic reactions, which do not reduce the active lithium content of the cell, but induce a parasitic current. In this work, a novel approach is proposed in order to differentiate between QAIC and QALL. The determination of QALL is based on the remaining active lithium content of a given cell, which can be determined by de-lithiation of the cathode with the help of the reference electrode of a three-electrode set-up. Lithium non-consuming parasitic reactions, which do not influence the active lithium content have no influence on this determination. In order to evaluate this novel approach, three different anode materials (graphite, carbon spheres and a silicon/graphite composite) were investigated. It is shown that during the first charge/discharge cycles QALL is described moderately well by QAIC. However, the difference between QAIC and QALL rises with increasing cycle number. With this approach, a differentiation between “simple” irreversible capacities and truly detrimental “active Li losses” is possible and, thus, Coulombic efficiency can be directly related to the remaining useable cell capacity for the first time. Overall, the exact determination of the remaining active lithium content of the cell is of great importance, because it allows a statement on whether the reduction in lithium content is crucial for capacity fading or whether the fading is related to other degradation mechanisms such as material or electrode failure

    Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges

    No full text
    Abstract: In order to meet the sophisticated demands for large-scale applications such as electro-mobility, next generation energy storage technologies require advanced electrode active materials with enhanced gravimetric and volumetric capacities to achieve increased gravimetric energy and volumetric energy densities. However, most of these materials suffer from high 1st cycle active lithium losses, e.g., caused by solid electrolyte interphase (SEI) formation, which in turn hinder their broad commercial use so far. In general, the loss of active lithium permanently decreases the available energy by the consumption of lithium from the positive electrode material. Pre-lithiation is considered as a highly appealing technique to compensate for active lithium losses and, therefore, to increase the practical energy density. Various pre-lithiation techniques have been evaluated so far, including electrochemical and chemical pre-lithiation, pre-lithiation with the help of additives or the pre-lithiation by direct contact to lithium metal. In this review article, we will give a comprehensive overview about the various concepts for pre lithiation and controversially discuss their advantages and challenges. Furthermore, we will critically discuss possible effects on the cell performance and stability and assess the techniques with regard to their possible commercial exploration

    Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

    No full text
    In this work, silicon/carbon composites are synthesized by forming an amorphous carbon matrix around silicon nanoparticles (Si-NPs) in a hydrothermal process. The intention of this material design is to combine the beneficial properties of carbon and Si, i.e., an improved specific/volumetric capacity and capacity retention compared to the single materials when applied as a negative electrode in lithium-ion batteries (LIBs). This work focuses on the influence of the Si content (up to 20 wt %) on the electrochemical performance, on the morphology and structure of the composite materials, as well as the resilience of the hydrothermal carbon against the volumetric changes of Si, in order to examine the opportunities and limitations of the applied matrix approach. Compared to a physical mixture of Si-NPs and the pure carbon matrix, the synthesized composites show a strong improvement in long-term cycling performance (capacity retention after 103 cycles: ≈55% (20 wt % Si composite) and ≈75% (10 wt % Si composite)), indicating that a homogeneous embedding of Si into the amorphous carbon matrix has a highly beneficial effect. The most promising Si/C composite is also studied in a LIB full cell vs a NMC-111 cathode; such a configuration is very seldom reported in the literature. More specifically, the influence of electrochemical prelithiation on the cycling performance in this full cell set-up is studied and compared to non-prelithiated full cells. While prelithiation is able to remarkably enhance the initial capacity of the full cell by ≈18 mAh g−1, this effect diminishes with continued cycling and only a slightly enhanced capacity of ≈5 mAh g−1 is maintained after 150 cycles

    Toward High Power Batteries: Pre-lithiated Carbon Nanospheres as High Rate Anode Material for Lithium Ion Batteries

    No full text
    In this work, carbon nanospheres (CS) are prepared by hydrothermal synthesis using glucose as precursor, followed by a subsequent carbonization step. By variation of the synthesis parameters, CS particles with different particle sizes are obtained. With particular focus on the fast charging capability, the electrochemical performance of CS as anode material in lithium ion batteries (LIBs) is investigated, including the influence of particle size and carbonization temperature. It is shown that CS possess an extraordinary good long-term cycling stability and a very good rate capability (up to 20C charge/discharge rate) at operating temperatures of 20 and 0 °C compared to graphitic carbon and Li4Ti5O12 (LTO)-based anodes. One major disadvantage of CS is the very low first cycle Coulombic efficiency (Ceff) and the related high active lithium loss, which prevents usage of CS within LIB full cells. Nevertheless, in order to overcome this problem, we performed electrochemical pre-lithiation, which significantly improves the first cycle Ceff and enables usage of CS within LIB full cells (vs NMC-111), which is shown here for the first time. The improved rate capability of CS is also verified in electrochemically pre-lithiated NMC-based LIB full cells, in comparison to graphite and LTO anodes. Further, CS also display an improved specific energy (at ≥5C), energy efficiency (at ≥2C), and energy retention (at ≥2C) compared to graphite and LTO-based LIB full cells

    A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup

    No full text
    The ever-increasing demand for electrical energy storage technologies triggered by the demands for consumer electronics, stationary energy storage systems and especially the rapidly growing market of electro mobility boosts the need for cost-effective, highly efficient and highly performant rechargeable battery systems. After the successful implementation of lithium ion batteries (LIBs) in consumer electronics and electric vehicles, there is still a need for further improvements in terms of energy and power densities, safety, cost and lifetime. In the last decades, a large battery research community has evolved, developing all kinds of new battery materials, e.g., positive and negative electrode active materials for different cell chemistries, electrolytes, related auxiliary (inactive) materials and their constituents
    corecore