1,441 research outputs found

    Middle atmosphere project. A semi-spectral numerical model for the large-scale stratospheric circulation

    Get PDF
    The complete model is a semispectral model in which the longitudinal dependence is represented by expansion in zonal harmonics while the latitude and height dependencies are represented by a finite difference grid. The model is based on the primitive equations in the log pressure coordinate system. The lower boundary of the model domain is set at the 100 mb level (i.e., near the tropopause) and the effects of tropospheric forcing are included in the lower boundary condition. The upper boundary is at approximately 96 km, and the latitudinal extent is either global or hemispheric. The basic differential equations and boundary conditions are outlined. The finite difference equations are described. The initial conditions are discussed and a sample calculation is presented. The FORTRAN code is given in the appendix

    The atmospheric effects of stratospheric aircraft: A current consensus

    Get PDF
    In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified

    NASA newsletters for the Weber Student Shuttle Involvement Project

    Get PDF
    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix

    Deutsch-Jozsa algorithm as a test of quantum computation

    Full text link
    A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a refined algorithm, which reduces the size of the register and simplifies the function evaluation, is proposed. The refined version allows a simpler analysis of the use of entanglement between the qubits in the algorithm and provides criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev

    Assessing and Manipulating The Illusion of Control of Video Poker Players

    Get PDF
    The present investigation explored the presence of illusory control in recreation-al video poker players. Using a multi-monitor computer which allowed for two different types of games to be presented concurrently, one on each monitor, players were allowed to freely choose which game they wished to play. One option allowed for the player to select the cards they wished to hold and discard, while the other option was designed such that the computer automatically se-lected the most probabilistically optimal sequence of cards to hold and discard. In the first experiment, two groups of ten participants were exposed to one of two rules (accurate or inaccurate) regarding the chances of winning. No differ-ences in response allocations between the games were found. In the second experiment, thirteen participants were sequentially exposed to a non-rule base-line followed by an inaccurate and subsequently accurate rule. Twelve of the thirteen players preferred the self-selecting game, and following the introduction of an experimenter given rule that was designed to strengthen the illusion (i.e., that the self-selecting option was better), most players increased their preference for this option. However, following the introduction of an experimenter given rule that attempted to weaken the illusion, only about half the participants fol-lowed that rule and reduced playing the self-selecting option. Variability across participants was able to be explained by examining each player’s verbal talk which was emitted overtly throughout the duration of the experiment. Implica-tions for understanding the illusion of control and the verbal behavior of gam-blers are presented

    The use of nerve and muscle biopsy in the diagnosis of vasculitis: a 5 year retrospective study

    Get PDF
    INTRODUCTION: Peripheral nerve vasculitis is an important condition which can be diagnostically challenging and is one of the principal current indications for nerve and muscle biopsy. Previous studies have suggested that combined nerve and muscle biopsy (usually of the superficial peroneal nerve and peroneus brevis muscle) produces a higher diagnostic yield than nerve biopsy alone in the investigation of vasculitis. OBJECTIVE: To determine whether in our two centres combined nerve (usually the sural) and muscle (usually the vastus lateralis) biopsy improved diagnostic yield compared with nerve biopsy alone. METHODS: We interrogated our database of all nerve biopsies (usually of the sural nerve) performed at our institutions over 5 years and identified 53 cases of biopsy proven peripheral nerve vasculitis. Clinicopathological and neurophysiological data in these patients were reviewed. RESULTS: The most common clinical presentation was with a painful asymmetric axonal polyneuropathy or mononeuritis multiplex (66% of cases). Nerve biopsy demonstrated definite vasculitis in 36%, probable vasculitis in 62% and no vasculitis in 2% of cases. In 24 patients a muscle biopsy (usually the vastus lateralis) was also performed and vasculitis was demonstrated in 46% of these (in 13% showing definite and 33% probable vasculitis). There was only one patient in whom vasculitis was demonstrated in muscle but not in peripheral nerve. CONCLUSION: Combined nerve (usually sural) and vastus lateralis muscle biopsy did not significantly increase the diagnostic yield compared with nerve biopsy alone. A sensible approach to the diagnosis of peripheral nerve vasculitis is to choose a nerve to biopsy which is clinically affected and amenable to biopsy. If the sural nerve is chosen, the data suggest that it is not routinely worth doing a vastus lateralis biopsy at the same time, whereas if the superficial peroneal nerve is chosen, it seems appropriate to do a combined superficial peroneal nerve and peroneus brevis biopsy. It is still not known if both the sural and superficial peroneal nerves are involved clinically which one gives the higher yield if biopsied

    Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata

    Get PDF
    BackgroundQuantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement but are of limited applicability for slow-moving species. It has recently been suggested that metrics based on angular velocity might be better suited to characterise their energetics. We investigated whether a novel metric—the ‘Rate of change of Rotational Movement (RocRM)’, calculated from the vectoral sum of change in the pitch, roll and yaw/heading axes over a given length of time, is a suitable proxy for energy expenditure.ResultsWe found that RocRM can be used as an alternative energy expenditure proxy in a slow-moving benthic invertebrate. Eleven Giant spider conchs Lambis truncata (collected in the Red Sea) were instrumented with multiple channel (Daily Diary) tags and kept in sealed chambers for 5 h while their oxygen consumption, V̇O2, was measured. We found RocRM to be positively correlated with V̇O2, this relationship being affected by the time-step (i.e. the range of the calculated differential) of the RocRM. Time steps of 1, 5, 10 and 60 s yielded an explained variability of between 15 and 31%. The relationship between V̇O2 and VeDBA was not statistically significant, suggesting RocRM to provide more accurate estimations of metabolic rates in L. truncata.ConclusionsRocRM proved to be a statistically significant predictor of V̇O2 where VeDBA did not, validating the approach of using angular-based metrics over dynamic movement-based ones for slower moving animals. Further work is required to validate the use of RocRM for other species, particularly in animals with minimally dynamic movement, to better understand energetic costs of whole ecosystems. Unexplained variability in the models might be a consequence of the methodology used, but also likely a result of conch activity that does not manifest in movement of the shell. Additionally, density plots of mean RocRM at each time-step suggest differences in movement scales, which may collectively be useful as a species fingerprint of movement going forward

    NMR quantum computation with indirectly coupled gates

    Full text link
    An NMR realization of a two-qubit quantum gate which processes quantum information indirectly via couplings to a spectator qubit is presented in the context of the Deutsch-Jozsa algorithm. This enables a successful comprehensive NMR implementation of the Deutsch-Jozsa algorithm for functions with three argument bits and demonstrates a technique essential for multi-qubit quantum computation.Comment: 9 pages, 2 figures. 10 additional figures illustrating output spectr

    Time-Lapse Acoustic Imaging of Mesoscale and Fine-Scale Variability within the Faroe-Shetland Channel

    Get PDF
    We describe and analyze the results of a three‐dimensional seismic (i.e. acoustic) reflection survey from the Faroe‐Shetland Channel that is calibrated with near‐coincident hydrographic and satellite observations. 54 vertical seismic transects were acquired over a period of 25 days. On each transect, a 250‐‐400 m band of reflections is observed within the water column. Hydrographic measurements demonstrate that this reflective band is caused by temperature variations within the pycnocline that separates warm, near‐surface waters of Atlantic origin from cold, deep waters which flow southward from the Nordic Seas. Tilting of reflective surfaces records geostrophic shear between these near‐surface and deep waters. Measurements of temporal changes of pycnoclinic depth and of reflection tilt are used to infer the existence of an anticyclonic vortex that advects northeastward. Comparison with satellite measurements of sea‐surface temperature and height suggests that this vortex is caused by meandering of the Continental Slope Current. A model of a Gaussian vortex is used to match seismic and satellite observations. This putative vortex has a core radius of 20—30 km and a maximum azimuthal velocity of 0.3‐‐0.4 m s‐1. It translates at 0.01‐‐0.1 m s‐1. Within the pycnocline, diapycnal diffusivity, K , is estimaed by analyzing the turbulent spectral subrange of tracked reflections. K varies between 10‐5.7 and 10‐5.0 m 2 s‐1 in a pattern that is broadly consistent with translation of the vortex. Our integrated study demonstrates the ability of time‐lapse seismic reflection surveying to dynamically resolve the effects that mesoscale activity has upon deep thermohaline structure on scales from meters to hundreds of kilometers.Natural Environment Research Council (NERC) Engineering and Physical Science Research Council 794 Program Grant EP/K034529/
    • 

    corecore