73 research outputs found

    The gravitino coupling to broken gauge theories applied to the MSSM

    Full text link
    We consider gravitino couplings in theories with broken gauge symmetries. In particular, we compute the single gravitino production cross section in W+ W- fusion processes. Despite recent claims to the contrary, we show that this process is always subdominant to gluon fusion processes in the high energy limit. The full calculation is performed numerically; however, we give analytic expressions for the cross section in the supersymmetric and electroweak limits. We also confirm these results with the use of the effective theory of goldstino interactions.Comment: 26 pages, 4 figure

    Differential regulation of iron chelator-induced IL-8 synthesis via MAP kinase and NF-κB in immortalized and malignant oral keratinocytes

    Get PDF
    Abstract Background Interleukin-8 (IL-8) is a cytokine that plays an important role in tumor progression in a variety of cancer types; however, its regulation is not well understood in oral cancer cells. In the present study, we examined the expression and mechanism of IL-8 in which it is involved by treating immortalized (IHOK) and malignant human oral keratinocytes (HN12) cells with deferoxamine (DFO). Methods IL-8 production was measured by an enzyme-linked immunoabsorbent assay and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Electrophoretic mobility shift assays was used to determine NF-κB binding activity. Phosphorylation and degradation of the I-κB were analyized by Western blot. Results IHOK cells incubated with DFO showed increased expression of IL-8 mRNA, as well as higher release of the IL-8 protein. The up-regulation of DFO-induced IL-8 expression was higher in IHOK cells than in HN12 cells and was concentration-dependent. DFO acted additively with IL-1β to strongly up-regulate IL-8 in IHOK cells but not in HN12 cells. Accordingly, selective p38 and ERK1/2 inhibitors for both kinases abolished DFO-induced IL-8 expression in both IHOK and HN12 cells. Furthermore, DFO induced the degradation and phosphorylation of IκB, and activation of NF-κB. The IL-8 inducing effects of DFO were mediated by a nitric oxide donor (S-nitrosoglutathione), and by pyrrolidine dithiocarbamate, an inhibitor of NF-κB, as well as by wortmannin, which inhibits the phosphatidylinositol 3-kinase-dependent activation of NAD(P)H oxidase. Conclusion This results demonstrate that DFO-induced IL-8 acts via multiple signaling pathways in immortalized and malignant oral keratinocytes, and that the control of IL-8 may be an important target for immunotheraphy against human oral premalignant lesions.</p

    Modulation of Interleukin-1 Transcriptional Response by the Interaction between VRK2 and the JIP1 Scaffold Protein

    Get PDF
    Background. Cellular biological responses to specific stimulation are determined by a balance among signaling pathways. Protein interactions are likely to modulate these pathways. Vaccinia-related kinase-2 (VRK2) is a novel human kinase that can modulate different signaling pathways. Principal findings. We report that in vivo, the activity of JIP1-JNK complexes is downregulated by VRK2 in response to interleukin-1β. Also the reduction of endogenous VRK2 with shRNA increases the transcriptional response to IL-1β. The JIP1 scaffold protein assembles three consecutive members of a given MAPK pathway forming signaling complexes and their signal can be modulated by interactions with regulatory proteins that remain to be identified. Knocking-down JIP1 with siRNA resulted in elimination of the AP1 transcriptional response to IL-1β. VRK2, a member of novel Ser-Thr kinase family, is able to stably interact with JIP1, TAK1 and MKK7, but not JNK, and can be isolated forming oligomeric complexes with different proportions of TAK1, MKK7β1 and JNK. JIP1 assembles all these proteins in an oligomeric signalosome. VRK2 binding to the JIP1 signalosome prevents the association of JNK and results in a reduction in its phosphorylation and downregulation of AP1-dependent transcription. Conclusions/Significance. This work suggests that the intracellular level of VRK2 protein can modulate the flow through a signaling pathway and alter the response from a receptor that can be distributed by more than one pathway, and thus contribute to the cellular specificity of the response by forming alternative signaling complexes. Furthermore, the effect might be more general and affect other signaling routes assembled on the JIP1 scaffold protein for which a model is proposed.S.B., M. S-G, and C.R.S. have predoctoral fellowships from Ministerio de Educación y Ciencia, CSIC (Spain) and Fundação para a Ciência e a Tecnologia (Portugal) respectively. This work was funded by grants from Ministerio de Educación y Ciencia (SAF2004-02900, SAF2007-60242 and Consolider CSD-2007-0017), Fundación de Investigación Médica MM and Federación de Cajas de Ahorro de Castilla y León to P.A.L.Peer reviewe

    Role of N-linked glycosylation on the function and expression of the human secretin receptor

    No full text
    Secretin is a 27-amino acid long peptide hormone that regulates pancreatic water, bicarbonate, enzymes, and potassium ion secretion. The human secretin receptor (hSR) is a glycoprotein consisting of 440 amino acids, of which there are 5 putative N-linked glycosylation sites at positions Asn 72, Asn 100, Asn 106, Asn 128 (N-terminal ectodomain), and Asn 291 (second exoloop). Through functional analysis of the hSR-transfected cells cultured in the presence of various glycosylation inhibitors, it was found that tunicamycin and castanospermine were able to significantly reduce the secretin-stimulated cAMP response. On the other hand, the effects of other inhibitors, swainsonine and deoxymannojirimycin, were much lower, suggesting that the high mannose-type carbohydrate side-chain is essential to the expression of a fully functional hSR. The role of individual N-linked glycosylation sites was studied by mutation analysis (Asn to Leu or Ser to Ala) coupled to measurements of cAMP accumulation and extracellular acidification rate. The ED 50 values of the wild-type receptor in these two assay systems were 0.25 and 0.11 nM, respectively, and mutation at position 100, 106, or 291 did not affect either the ED 50 values or the maximal responses in the two assays. However, the Asn 72Leu and Ser 74Ala mutations reduced the maximal responses and increased the ED 50 values in both assays, suggesting that this site is a true glycosylation signal. This hypothesis was further supported by competitive binding studies, the same mutants were found to be defective in binding with [ 125I]secretin. To evaluate whether the change in receptor function of the mutants is caused by the change in the process of presenting the receptor to the cell surface, the mutants and the wild-type receptor were tagged with a c-Myc epitope at the C-termini. Using an anti-c-Myc monoclonal antibody and confocal microscopy, all of the mutant receptors were found to be expressed and delivered to the plasma membrane.link_to_subscribed_fulltex
    • …
    corecore