20 research outputs found

    Rubber vs. oil palm: an analysis of factors influencing smallholders' crop choice in Jambi, Indonesia

    Get PDF
    The rapid expansion of the oil palm area in many tropical countries has raised concerns about its negative impact on local communities, food security, and on the environment. While the expansion of oil palm in early stages was mainly driven by large private and public companies, it is expected that smallholders will outnumber large estates in the near future. For policy formulation it is hence important to better understand who these smallholders are and why they have started to cultivate oil palm. In this paper, we used a rich dataset collected in the province of Jambi, which is one of the most important production areas for oil palm, to analyse smallholders’ decision making by combining qualitative, quantitative, and experimental methods. We identified agricultural expertise, lacking flexibility in labour requirements, availability of seedlings, and investment costs as the major constraints for farmers to cultivate oil palm. Important reasons for oil palm cultivation are the higher returns to labour and the shorter immature phase of oil palm. We also showed that oil palm farmers are neither risk-averse nor risk-loving, rather, they appear to be risk-neutral

    Impact of the first COVID lockdown on accident- and injury-related pediatric intensive care admissions in Germany - a multicenter study

    Get PDF
    Children’s and adolescents’ lives drastically changed during COVID lockdowns worldwide. To compare accident- and injury-related admissions to pediatric intensive care units (PICU) during the first German COVID lockdown with previous years, we conducted a retrospective multicenter study among 37 PICUs (21.5% of German PICU capacities). A total of 1444 admissions after accidents or injuries during the first lockdown period and matched periods of 2017–2019 were reported and standardized morbidity ratios (SMR) were calculated. Total PICU admissions due to accidents/injuries declined from an average of 366 to 346 (SMR 0.95 (CI 0.85–1.05)). Admissions with trauma increased from 196 to 212 (1.07 (0.93–1.23). Traffic accidents and school/kindergarten accidents decreased (0.77 (0.57–1.02 and 0.26 (0.05–0.75)), whereas household and leisure accidents increased (1.33 (1.06–1.66) and 1.34 (1.06–1.67)). Less neurosurgeries and more visceral surgeries were performed (0.69 (0.38–1.16) and 2.09 (1.19–3.39)). Non-accidental non-suicidal injuries declined (0.73 (0.42–1.17)). Suicide attempts increased in adolescent boys (1.38 (0.51–3.02)), but decreased in adolescent girls (0.56 (0.32–0.79)). In summary, changed trauma mechanisms entailed different surgeries compared to previous years. We found no evidence for an increase in child abuse cases requiring intensive care. The increase in suicide attempts among boys demands investigation

    LPS-Induced Endotoxemia Evokes Epigenetic Alterations in Mitochondrial DNA That Impacts Inflammatory Response

    No full text
    Mitochondrial DNA (mtDNA) plays a vital role as a damage-associated molecular pattern in sepsis being able to shape the immune response. Since pathogen recognition receptors of innate immune cells are activated by demethylated DNA only, we set out to investigate the amount of DNA methyltransferase 1 (DNMT1) in mitochondria and the extent of mtDNA methylation in a human endotoxin model. Peripheral blood mononuclear cells of 20 healthy individuals were isolated from whole blood and stimulated with lipopolysaccharide (LPS) for 48 h. Subsequently, DNMT1 protein abundance was assessed in whole cells and a mitochondrial fraction. At the same time, methylation levels of mtDNA were quantified, and cytokine expression in the supernatant was measured. Despite increased cellular expression of DNMT1 after LPS stimulation, the degree of mtDNA methylation slightly decreased. Strikingly the mitochondrial protein abundance of DNMT1 was reduced by 50% in line with the lower degree of mtDNA methylation. Although only modest alterations were seen in the degree of mtDNA methylation, these strongly correlated with IL-6 and IL-10 expression. Our data may hint at a protein import problem for DNMT1 into the mitochondria under LPS stimulation and suggest a role of demethylated mtDNA in the regulation of the inflammatory immune response

    A novel understanding of postoperative complications: In vitro study of the impact of propofol on epigenetic modifications in cholinergic genes.

    No full text
    BackgroundPropofol is a widely used anaesthetic drug with advantageous operating conditions and recovery profile. However, propofol could have long term effects on neuronal cells and is associated with post-operative delirium (POD). In this context, one of the contributing factors to the pathogenesis of POD is a reduction of cholinesterase activity. Accordingly, we investigated the effects of propofol on the methylation, expression and activity of cholinergic genes and proteins in an in-vitro model.ResultsWe found that propofol indeed reduced the activity of AChE / BChE in our in-vitro model, without affecting the protein levels. Furthermore, we could show that propofol reduced the methylation of a repressor region of the CHRNA7 gene without changing the secretion of pro-or anti-inflammatory cytokines. Lastly, propofol changed the expression patterns of genes responsible for maintaining the epigenetic status of the cell and accordingly reduced the tri-methylation of H3 K27.ConclusionIn conclusion we found a possible functional link between propofol treatment and POD, due to a reduced cholinergic activity. In addition to this, propofol changed the expression of different maintenance genes of the epigenome that also affected histone methylation. Thus, propofol treatment may also induce strong, long lasting changes in the brain by potentially altering the epigenetic landscape

    A novel understanding of postoperative complications

    No full text
    Background\bf Background Propofol is a widely used anaesthetic drug with advantageous operating conditions and recovery profile. However, propofol could have long term effects on neuronal cells and is associated with post-operative delirium (POD). In this context, one of the contributing factors to the pathogenesis of POD is a reduction of cholinesterase activity. Accordingly, we investigated the effects of propofol on the methylation, expression and activity of cholinergic genes and proteins in an in−vitro\it in-vitro model. Results\bf Results We found that propofol indeed reduced the activity of AChE / BChE in our in−vitro\it in-vitro model, without affecting the protein levels. Furthermore, we could show that propofol reduced the methylation of a repressor region of the CHRNA7 gene without changing the secretion of pro–or anti-inflammatory cytokines. Lastly, propofol changed the expression patterns of genes responsible for maintaining the epigenetic status of the cell and accordingly reduced the tri-methylation of H3 K27. Conclusion\bf Conclusion In conclusion we found a possible functional link between propofol treatment and POD, due to a reduced cholinergic activity. In addition to this, propofol changed the expression of different maintenance genes of the epigenome that also affected histone methylation. Thus, propofol treatment may also induce strong, long lasting changes in the brain by potentially altering the epigenetic landscape

    LPS-induced endotoxemia evokes epigenetic alterations in mitochondrial DNA that impacts inflammatory response

    No full text
    Mitochondrial DNA (mtDNA) plays a vital role as a damage-associated molecular pattern in sepsis being able to shape the immune response. Since pathogen recognition receptors of innate immune cells are activated by demethylated DNA only, we set out to investigate the amount of DNA methyltransferase 1 (DNMT1) in mitochondria and the extent of mtDNA methylation in a human endotoxin model. Peripheral blood mononuclear cells of 20 healthy individuals were isolated from whole blood and stimulated with lipopolysaccharide (LPS) for 48 h. Subsequently, DNMT1 protein abundance was assessed in whole cells and a mitochondrial fraction. At the same time, methylation levels of mtDNA were quantified, and cytokine expression in the supernatant was measured. Despite increased cellular expression of DNMT1 after LPS stimulation, the degree of mtDNA methylation slightly decreased. Strikingly the mitochondrial protein abundance of DNMT1 was reduced by 50% in line with the lower degree of mtDNA methylation. Although only modest alterations were seen in the degree of mtDNA methylation, these strongly correlated with IL-6 and IL-10 expression. Our data may hint at a protein import problem for DNMT1 into the mitochondria under LPS stimulation and suggest a role of demethylated mtDNA in the regulation of the inflammatory immune response
    corecore