378 research outputs found

    A micro-mechanics based extension of the GTN continuum model accounting for random void distributions

    Full text link
    Randomness in the void distribution within a ductile metal complicates quantitative modeling of damage following the void growth to coalescence failure process. Though the sequence of micro-mechanisms leading to ductile failure is known from unit cell models, often based on assumptions of a regular distribution of voids, the effect of randomness remains a challenge. In the present work, mesoscale unit cell models, each containing an ensemble of four voids of equal size that are randomly distributed, are used to find statistical effects on the yield surface of the homogenized material. A yield locus is found based on a mean yield surface and a standard deviation of yield points obtained from 15 realizations of the four-void unit cells. It is found that the classical GTN model very closely agrees with the mean of the yield points extracted from the unit cell calculations with random void distributions, while the standard deviation S\textbf{S} varies with the imposed stress state. It is shown that the standard deviation is nearly zero for stress triaxialities T1/3T\leq1/3, while it rapidly increases for triaxialities above T1T\approx 1, reaching maximum values of about S/σ00.1\textbf{S}/\sigma_0\approx0.1 at T4T \approx 4. At even higher triaxialities it decreases slightly. The results indicate that the dependence of the standard deviation on the stress state follows from variations in the deformation mechanism since a well-correlated variation is found for the volume fraction of the unit cell that deforms plastically at yield. Thus, the random void distribution activates different complex localization mechanisms at high stress triaxialities that differ from the ligament thinning mechanism forming the basis for the classical GTN model. A method for introducing the effect of randomness into the GTN continuum model is presented, and an excellent comparison to the unit cell yield locus is achieved

    Interaction of Void Spacing and Material Size Effect on Inter-Void Flow Localization

    Get PDF
    The ductile fracture process in porous metals due to growth and coalescence of micron scale voids is not only affected by the imposed stress state but also by the distribution of the voids and the material size effect. The objective of this work is to understand the interaction of the inter-void spacing (or ligaments) and the resultant gradient induced material size effect on void coalescence for a range of imposed stress states. To this end, three dimensional finite element calculations of unit cell models with a discrete void embedded in a strain gradient enhanced material matrix are performed. The calculations are carried out for a range of initial inter-void ligament sizes and imposed stress states characterised by fixed values of the stress triaxiality and the Lode parameter. Our results show that in the absence of strain gradient effects on the material response, decreasing the inter-void ligament size results in an increase in the propensity for void coalescence. However, in a strain gradient enhanced material matrix, the strain gradients harden the material in the inter-void ligament and decrease the effect of inter-void ligament size on the propensity for void coalescence

    Rapid export of waters formed by convection near the Irminger Sea's western boundary

    Get PDF
    The standard view of the overturning circulation emphasizes the role of convection, yet for waters to contribute to overturning, they must not only be transformed to higher densities but also exported equatorward. From novel mooring observations in the Irminger Sea (2014–2016), we describe two water masses that are formed by convection and show that they have different rates of export in the western boundary current. Upper Irminger Sea Intermediate Water appears to form near the boundary current and is exported rapidly within 3 months of its formation. Deep Irminger Sea Intermediate Water forms in the basin interior and is exported on longer time scales. The subduction of these waters into the boundary current is consistent with an eddy transport mechanism. Our results suggest that light intermediate waters can contribute to overturning as much as waters formed by deeper convection and that the export time scales of both project onto overturning variability. Plain Language Summary The deep ocean can regulate the Earth's climate by storing carbon and heat. At high latitudes, waters are cooled by the atmosphere and sink, but they can only be successfully stored in the deep ocean if they are exported toward the equator. In this study, we analyze new mooring observations in the Irminger Sea to investigate the cooling and export of high‐latitude waters. In addition to the well‐documented waters that are cooled in the center of the Irminger Sea, we find that saltier waters are cooled near the western boundary current. Both of these water types make it into boundary current and are exported. Our observations are consistent with the dynamics of swirling eddy motions. The eddy transport process is more effective for the waters cooled near the boundary current, implying that cooling near boundary currents may be more important for the climate than has been appreciated to date

    A micro-mechanics based extension of the GTN continuum model accounting for random void distributions

    Get PDF
    Randomness in the void distribution within a ductile metal complicates quantitative modeling of damage following the void growth to coalescence failure process. Though the sequence of micro-mechanisms leading to ductile failure is known from unit cell models, often based on assumptions of a regular distribution of voids, the effect of randomness remains a challenge. In the present work, mesoscale unit cell models, each containing an ensemble of four voids of equal size that are randomly distributed, are used to find statistical effects on the yield surface of the homogenized material. A yield locus is found based on a mean yield surface and a standard deviation of yield points obtained from 15 realizations of the four-void unit cells. It is found that the classical GTN model very closely agrees with the mean of the yield points extracted from the unit cell calculations with random void distributions, while the standard deviation S\textbf{S} varies with the imposed stress state. It is shown that the standard deviation is nearly zero for stress triaxialities T1/3T\leq1/3, while it rapidly increases %in the interval 4/3T54/3\lesssim T \lesssim 5 for triaxialities above T1T\approx 1, reaching maximum values of about S/σ00.1\textbf{S}/\sigma_0\approx0.1 at T4T \approx 4. At even higher triaxialities it decreases slightly. The results indicate that the dependence of the standard deviation on the stress state follows from variations in the deformation mechanism since a well-correlated variation is found for the volume fraction of the unit cell that deforms plastically at yield. Thus, the random void distribution activates different complex localization mechanisms at high stress triaxialities that differ from the ligament thinning mechanism forming the basis for the classical GTN model. A method for introducing the effect of randomness into the GTN continuum model is presented, and an excellent comparison to the unit cell yield locus is achieved

    Empirical Evaluation of the Difficulty of Finding a Good Value of k for the Nearest Neighbor

    Get PDF
    As an analysis of the classification accuracy bound for the Nearest Neighbor technique, in this work we have studied if it is possible to find a good value of the parmeter k for each example according to their attribute values. Or at least, if there is a pattern for the parameter k in the original search space. We have carried out different approaches based onthe Nearest Neighbor technique and calculated the prediction accuracy for a group of databases from the UCI repository. Based on the experimental results of our study, we can state that, in general, it is not possible to know a priori a specific value of k to correctly classify an unseen example

    Finding a short and accurate decision rule in disjunctive normal form by exhaustive search

    Get PDF
    Greedy approaches suffer from a restricted search space which could lead to suboptimal classifiers in terms of performance and classifier size. This study discusses exhaustive search as an alternative to greedy search for learning short and accurate decision rules. The Exhaustive Procedure for LOgic-Rule Extraction (EXPLORE) algorithm is presented, to induce decision rules in disjunctive normal form (DNF) in a systematic and efficient manner. We propose a method based on subsumption to reduce the number of values considered for instantiation in the literals, by taking into account the relational operator without loss of performance. Furthermore, we describe a branch-and-bound approach that makes optimal use of user-defined performance constraints. To improve the generalizability we use a validation set to determine the optimal length of the DNF rule. The performance and size of the DNF rules induced by EXPLORE are compared to those of eight well-known rule learners. Our results show that an exhaustive approach to rule learning in DNF results in significantly smaller classifiers than those of the other rule learners, while securing comparable or even better performance. Clearly, exhaustive search is computer-intensive and may not always be feasible. Nevertheless, based on this study, we believe that exhaustive search should be considered an alternative for greedy search in many problems

    Bottom mixed layer oxygen dynamics in the Celtic Sea

    Get PDF
    The seasonally stratified continental shelf seas are highly productive, economically important environments which are under considerable pressure from human activity. Global dissolved oxygen concentrations have shown rapid reductions in response to anthropogenic forcing since at least the middle of the twentieth century. Oxygen consumption is at the same time linked to the cycling of atmospheric carbon, with oxygen being a proxy for carbon remineralisation and the release of CO2. In the seasonally stratified seas the bottom mixed layer (BML) is partially isolated from the atmosphere and is thus controlled by interplay between oxygen consumption processes, vertical and horizontal advection. Oxygen consumption rates can be both spatially and temporally dynamic, but these dynamics are often missed with incubation based techniques. Here we adopt a Bayesian approach to determining total BML oxygen consumption rates from a high resolution oxygen time-series. This incorporates both our knowledge and our uncertainty of the various processes which control the oxygen inventory. Total BML rates integrate both processes in the water column and at the sediment interface. These observations span the stratified period of the Celtic Sea and across both sandy and muddy sediment types. We show how horizontal advection, tidal forcing and vertical mixing together control the bottom mixed layer oxygen concentrations at various times over the stratified period. Our muddy-sand site shows cyclic spring-neap mediated changes in oxygen consumption driven by the frequent resuspension or ventilation of the seabed. We see evidence for prolonged periods of increased vertical mixing which provide the ventilation necessary to support the high rates of consumption observed

    Primary refractory follicular lymphoma: a poor outcome entity with high risk of transformation to aggressive B cell lymphoma

    Get PDF
    Background: Primary refractory (PREF) follicular lymphoma (FL) has a completely different clinical course from that of FL that responds to front-line treatments. In addition to having poor responses to salvage therapies, it seems that patients with PREF are at increased risk of histological transformation (HT). The Aristotle consortium presented the opportunity of investigating the risk of HT in a very large series of cases. Thus, we investigated the risk of HT in patients with PREF FL compared with that of responding patients or in stable disease and ultimately their outcome. Methods: Six thousand three hundred thirty-nine patients from the Aristotle database were included in the analysis. These patients had a histologically confirmed grade 1, 2 or 3a FL diagnosed between 1997 and 2013. The primary end-points were the cumulative incidence (CI) of HT at the first progression or relapse and the survival after transformation. Findings.: The 5-year CI of HT among patients with PREF was 34% (95% confidence interval (CI): 27–43), whilst it was 7.1% (95% CI: 6.0–8.5) in the group of patients with partial response (PR) or stable disease (SD) (PR + SD) and 3.5% (95% CI: 3.0–4.2) in the group of patients achieving complete response (CR). The 5-year survival after relapse (SAR) was 33% (95% CI: 28–39) for the PREF group, 57% (95% CI 54–61) in patients with PR, 51% (95% CI 43–58) in the SD group after first-line therapy and 63% (95% CI: 66–72) in patients with CR after initial treatment (p-value <0.001). The 5-year SAR for those patients with PREF who developed HT was 21% (95% CI: 12–31), clearly diminished when compared with those patients with PREF who did not experience HT (38% [95% CI: 31–44]) (p-value = 0.001). Interpretation.: Patients with PREF FL have a dismal outcome and an associated very high rate of HT that further worsens their poor prognosis

    Subpolar North Atlantic western boundary density anomalies and the Meridional Overturning Circulation

    Get PDF
    Changes in the Atlantic Meridional Overturning Circulation, which have the potential to drive societally-important climate impacts, have traditionally been linked to the strength of deep water formation in the subpolar North Atlantic. Yet there is neither clear observational evidence nor agreement among models about how changes in deep water formation influence overturning. Here, we use data from a trans-basin mooring array (OSNAP—Overturning in the Subpolar North Atlantic Program) to show that winter convection during 2014–2018 in the interior basin had minimal impact on density changes in the deep western boundary currents in the subpolar basins. Contrary to previous modeling studies, we find no discernable relationship between western boundary changes and subpolar overturning variability over the observational time scales. Our results require a reconsideration of the notion of deep western boundary changes representing overturning characteristics, with implications for constraining the source of overturning variability within and downstream of the subpolar region
    corecore