18,533 research outputs found

    Space station support of manned Mars missions

    Get PDF
    The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions

    Spaceport operations for deep space missions

    Get PDF
    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions

    Sterilizable liquid propulsion system Quarterly progress report, 2 Jan. - 31 Mar. 1967

    Get PDF
    Basic design, component selection, and materials compatibility tests for sterilizable liquid bipropellant propulsion syste

    Estimating Post-harvest Benefits from Increases in Commercial Fish Catches with Implications for Remediation of Impingement and Entrainment Losses at Power Plants

    Get PDF
    A variety of regulations may affect commercial fish catches. We take here as a case in point steps to reduce losses of aquatic organisms due to impingement and entrainment (I&E) at power plants. Methods to evaluate the benefits of such measures are needed for benefit-cost analysis. We use a new approach to estimating ex vessel demand by Holt and Bishop (2002) to address the portion of the benefits that occur post-harvest, that is, down the marketing chain after fishermen sell their catches. The model deals with the dockside prices and quantities for six major commercial species harvested from the U.S. Great Lakes. We use the model to explore the potential magnitude of post-harvest benefits for Great Lakes fisheries. We then turn to a possible approach to benefits transfer for cases where such a model is not available. A semi-realistic case example involving I&E losses to Great Lakes fisheries illustrates how benefits transfer would work.

    A wind tunnel investigation into the effects of roof curvature on the aerodynamic drag experienced by a light goods vehicle

    Get PDF
    Roof curvature is used to increase ground vehicle camber and enhance rear-body boat-tailing to reduce aerodynamic drag. Little aerodynamic data is published for light goods vehicles (LGVs) which account for a significant proportion of annual UK licensed vehicle miles. This paper details scale wind tunnel measurements at Re = 1.6 × 106 of a generic LGV utilising interchangeable roof panels to investigate the effects of curved roof profile on aerodynamic drag at simulated crosswinds between -6° and 16°. Optimum magnitudes of roof profile depth and axial location are suggested and the limited dataset indicates that increasing roof curvature is effective in reducing drag over a large yaw range, compared to a flat roof profile. This is primarily due to increased base pressure, possibly from enhanced mixing of longitudinal vortices shed from the rear-body upper side edges and increased turbulent mixing in the near-wake due to the increased effective boat-tail angle

    Investigation of the aerodynamic characteristics of a lifting body in ground proximity

    Get PDF
    The use of cambered hull shapes in the next generation of lighter-than-air vehicles to enhance aerodynamic performance, together with optimized take-off manoeuvre profiles, will require a more detailed understanding of ground proximity effects for such aircraft. A series of sub-scale wind tunnel tests at Re = 1.4 x 106 on a 6:1 prolate spheroid are used to identify potential changes in aerodynamic lift, drag and pitching moment coefficients that are likely to be experienced on the vehicle hull in isolation when in close ground proximity. The experimental data is supported by a preliminary assessment of surface pressure changes using a high order panel method (PANAIR) and RANS CFD simulations to assess the flow structure. The effect of ground proximity, most evident when non-dimensional ground clearance (h/c) < 0.3, is to reduce lift coefficient, increase drag coefficient and increase the body pitching moment coefficient
    corecore