5 research outputs found

    Boosters of a therapeutic HIV-1 vaccine induce divergent T cell responses related to regulatory mechanisms

    Get PDF
    AbstractTherapeutic human immunodeficiency virus (HIV) vaccines aim to reduce disease progression by inducing HIV-specific T cells. Vacc-4x are peptides derived from conserved domains within HIV-1 p24 Gag. Previously, Vacc-4x induced T cell responses in 90% of patients which were associated with reduced viral loads. Here we evaluate the effects of Vacc-4x boosters on T cell immunity and immune regulation seven years after primary immunization. Twenty-five patients on effective antiretroviral therapy received two Vacc-4x doses four weeks apart and were followed for 16 weeks. Vacc-4x T cell responses were measured by proliferation (CFSE), INF-γ, CD107a, Granzyme B, Delayed-Type Hypersensitivity test (DTH) and cytokines and chemokines (Luminex). Functional regulation of Vacc-4x-specific T cell proliferation was estimated in vitro using anti-IL-10 and anti-TGF-ß monoclonal antibodies.Vacc-4x-specific CD8+ T cell proliferation increased in 80% after either the first (64%) or second (16%) booster. Only 40% remained responders after two boosters with permanently increased Vacc-4x-specific proliferative responses (p=0.005) and improved CD8+ T cell degranulation, IFN-γ production and DTH. At baseline, responders had higher CD8+ T cell degranulation (p=0.05) and CD4+ INF-γ production (p=0.01), whereas non-responders had higher production of proinflammatory TNF-α, IL-1α and IL-1ß (p<0.045) and regulatory IL-10 (p=0.07).Notably, IL-10 and TGF-ß mediated downregulation of Vacc-4x-specific CD8+ T cell proliferation increased only in non-responders (p<0.001). Downregulation during the study correlated to higher PD-1 expression on Vacc-4x-specific CD8+ T cells (r=0.44, p=0.037), but was inversely correlated to changes in Vacc4x-specific CD8+ T cell proliferation (r=−0.52, p=0.012).These findings show that Vacc-4x boosters can improve T cell responses in selected patients, but also induce vaccine-specific downregulation of T cell responses in others. Broad surveillance of T cell functions during immunization may help to individualize boosting, where assessment of vaccine-related immune regulation should be further explored as a potential new parameter

    Tissue Culture of Woody Plants and Its Relevance to Molecular Biology

    No full text

    The Germanic Iron Age and Viking Age in Danish Archaeology

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore