4,131 research outputs found

    The identification of physical close galaxy pairs

    Get PDF
    A classification scheme for close pairs of galaxies is proposed. The scheme is motivated by the fact that the majority of apparent close pairs are in fact wide pairs in three-dimensional space. This is demonstrated by means of numerical simulations of random samples of binary galaxies and the scrutiny of the resulting projected and spatial separation distributions. Observational strategies for classifying close pairs according to the scheme are suggested. As a result, physical (i.e., bound and spatially) close pairs are identified.Comment: 16 pages, 5 figures, accepted for publication in The Astronomical Journal, added text corrections on proof

    The Structure of the Outer Halo of the Galaxy and its Relationship to Nearby Large-Scale Structure

    Get PDF
    We present evidence to support an earlier indication that the Galaxy is embedded in an extended, highly inclined, triaxial halo outlined by the spatial distribution of companion galaxies to the Milky Way. Signatures of this spatial distribution are seen in 1) the angular variation of the radial-velocity dispersion of the companion galaxies, 2) the spatial distribution of the M~31 sub-group of galaxies, 3) the spatial distribution of the isolated, mainly dwarf irregular, galaxies of the Local Group, 4) the velocity anisotropy quadrupole of a sub-group of high-velocity clouds, and 5) the spatial distribution of galaxies in the Coma-Sculptor cloud. Tidal effects of M~31 and surrounding galaxies on the Galaxy are not strong enough to have affected the observed structure. We conclude that this distribution is a reflection of initial conditions. A simple galaxy formation scenario is proposed which ties together the results found here with those of Holmberg (1969) and Zaritsky et al. (1997) on the peculiar distribution of satellites around a large sample of spiral galaxies.Comment: Accepted for publication in the Astron J., March 2000, 12 pages with 1 figur

    Anisotropic Distribution of SDSS Satellite Galaxies: Planar (not Polar) Alignment

    Full text link
    The distribution of satellite galaxies relative to isolated host galaxies in the Sloan Digital Sky Survey (SDSS) is investigated. Host-satellite systems are selected using three different methods, yielding samples of ~3300, ~1600, and \~950 satellites. In the plane of the sky, the distributions of all three samples show highly significant deviations from circular symmetry (> 99.99%, > 99.99%, and 99.79% confidence levels, respectively), and the degree of anisotropy is a strong function of the projected radius, r_p, at which the satellites are found. For r_p < 100 kpc, the SDSS satellites are aligned preferentially with the major axes of the hosts. This is in stark contrast to the Holmberg effect, in which satellites are aligned with the minor axes of host galaxies. The degree of anisotropy in the distribution of the SDSS satellites decreases with r_p and is consistent with an isotropic distribution at of order the 1-sigma level for 250 kpc < r_p < 500 kpc.Comment: ApJ Letters (in press); Discussion section substantially revised, SDSS DR3 included in the analysis, no significant changes to the result

    A Hubble Space Telescope Snapshot Survey of Dynamically Close Galaxy Pairs in the CNOC2 Redshift Survey

    Full text link
    We compare the structural properties of two classes of galaxies at intermediate redshift: those in dynamically close galaxy pairs, and those which are isolated. Both samples are selected from the CNOC2 Redshift Survey, and have redshifts in the range 0.1 < z <0.6. Hubble Space Telescope WFPC2 images were acquired as part of a snapshot survey, and were used to measure bulge fraction and asymmetry for these galaxies. We find that paired and isolated galaxies have identical distributions of bulge fractions. Conversely, we find that paired galaxies are much more likely to be asymmetric (R_T+R_A >= 0.13) than isolated galaxies. Assuming that half of these pairs are unlikely to be close enough to merge, we estimate that 40% +/- 11% of merging galaxies are asymmetric, compared with 9% +/- 3% of isolated galaxies. The difference is even more striking for strongly asymmetric (R_T+R_A >= 0.16) galaxies: 25% +/- 8% for merging galaxies versus 1% +/- 1% for isolated galaxies. We find that strongly asymmetric paired galaxies are very blue, with rest-frame B-R colors close to 0.80, compared with a mean (B-R)_0 of 1.24 for all paired galaxies. In addition, asymmetric galaxies in pairs have strong [OII]3727 emission lines. We conclude that close to half of the galaxy pairs in our sample are in the process of merging, and that most of these mergers are accompanied by triggered star formation.Comment: Accepted for publication in the Astronomical Journal. 40 pages, including 15 figures. For full resolution version, please see http://www.trentu.ca/physics/dpatton/hstpairs

    Substructure around M31 : Evolution and Effects

    Get PDF
    We investigate the evolution of a population of 100 dark matter satellites orbiting in the gravitational potential of a realistic model of M31. We find that after 10 Gyr, seven subhalos are completely disrupted by the tidal field of the host galaxy. The remaining satellites suffer heavy mass loss and overall, 75% of the mass initially in the subhalo system is tidally stripped. Not surprisingly, satellites with pericentric radius less than 30 kpc suffer the greatest stripping and leave a complex structure of tails and streams of debris around the host galaxy. Assuming that the most bound particles in each subhalo are kinematic tracers of stars, we find that the halo stellar population resulting from the tidal debris follows an r^{-3.5} density profile at large radii. We construct B-band photometric maps of stars coming from disrupted satellites and find conspicuous features similar both in morphology and brightness to the observed Giant Stream around Andromeda. An assumed star formation efficiency of 5-10% in the simulated satellite galaxies results in good agreement with the number of M31 satellites, the V-band surface brightness distribution, and the brightness of the Giant Stream. During the first 5 Gyr, the bombardment of the satellites heats and thickens the disk by a small amount. At about 5 Gyr, satellite interations induce the formation of a strong bar which, in turn, leads to a significant increase in the velocity dispersion of the disk.Comment: 45 pages, 18 figures. To be submitted to the Astrophysical Journal, version 2.0 : scale height value corrected, references added, and some figures have been modifie

    The Relationship Between Baryons and Dark Matter in Extended Galaxy Halos

    Full text link
    The relationship between gas-rich galaxies and Ly-alpha absorbers is addressed in this paper in the context of the baryonic content of galaxy halos. Deep Arecibo HI observations are presented of two gas-rich spiral galaxies within 125 kpc projected distance of a Ly-alpha absorber at a similar velocity. The galaxies investigated are close to edge-on and the absorbers lie almost along their major axes, allowing for a comparison of the Ly-alpha absorber velocities with galactic rotation. This comparison is used to examine whether the absorbers are diffuse gas rotating with the galaxies' halos, outflow material from the galaxies, or intergalactic gas in the low redshift cosmic web. The results indicate that if the gas resides in the galaxies' halos it is not rotating with the system and possibly counter-rotating. In addition, simple geometry indicates the gas was not ejected from the galaxies and there are no gas-rich satellites detected down to 3.6 - 7.5 x 10^6 Msun, or remnants of satellites to 5-6 x 10^{18} cm^{-2}. The gas could potentially be infalling from large radii, but the velocities and distances are rather high compared to the high velocity clouds around the Milky Way. The most likely explanation is the galaxies and absorbers are not directly associated, despite the vicinity of the spiral galaxies to the absorbers (58-77 kpc from the HI edge). The spiral galaxies reside in a filament of intergalactic gas, and the gas detected by the absorber has not yet come into equilibrium with the galaxy. These results also indicate that the massive, extended dark matter halos of spiral galaxies do not commonly have an associated diffuse baryonic component at large radii.Comment: Accepted by AJ, 33 pages preprint format, see http://www.astro.lsa.umich.edu/~mputman/putman1.pdf for a higher resolution versio

    Tidally-Triggered Star Formation in Close Pairs of Galaxies

    Full text link
    We analyze new optical spectra of a sample of 502 galaxies in close pairs and n-tuples, separated by <= 50/h kpc. We extracted the sample objectively from the CfA2 redshift survey, without regard to the surroundings of the tight systems. We probe the relationship between star formation and the dynamics of the systems of galaxies. The equivalent widths of H\alpha (EW(H\alpha) and other emission lines anti-correlate strongly with pair spatial separation (\Delta D) and velocity separation. We use the measured EW(H\alpha) and the starburst models of Leitherer et al. to estimate the time since the most recent burst of star for- mation began for each galaxy. In the absence of a large contribution from an old stellar population to the continuum around H\alpha, the observed \Delta D -- EW(H\alpha) correlation signifies that starbursts with larger separations on the sky are, on average, older. By matching the dynamical timescale to the burst timescale, we show that the data support a simple picture in which a close pass initiates a starburst; EW(H\alpha) decreases with time as the pair separation increases, accounting for the anti-correlation. This picture leads to a method for measuring the duration and the initial mass function of interaction-induced starbursts: our data are compatible with the starburst and orbit models in many respects, as long as the starburst lasts longer than \sim10^8 years and the delay between the close pass and the initiation of the starburst is less than a few \times 10^7 years. If there is no large contribution from an old stellar population to the continuum around H\alpha the Miller-Scalo and cutoff (M <= 30 M_\sun) Salpeter initial mass functions fit the data much better than a standard Salpeter IMF. (Abridged.)Comment: 43 pages, 22 figures, to appear in the ApJ; we correct an error which had minor effects on numerical values in the pape

    Galactic Extinction from Colors and Counts of Field Galaxies in WFPC2 Frames: An Application to GRB 970228

    Full text link
    We develop the ``simulated extinction method'' to measure average foreground Galactic extinction from field galaxy number-counts and colors. The method comprises simulating extinction in suitable reference fields by changing the isophotal detection limit. This procedure takes into account selection effects, in particular, the change in isophotal detection limit (and hence in isophotal magnitude completeness limit) with extinction, and the galaxy color--magnitude relation. We present a first application of the method to the HST WFPC2 images of the gamma-ray burster GRB 970228. Four different WFPC2 high-latitude fields, including the HDF, are used as reference to measure the average extinction towards the GRB in the F606W passband. From the counts, we derive an average extinction of A_V = 0.5 mag, but the dispersion of 0.4 mag between the estimates from the different reference fields is significantly larger than can be accounted by Poisson plus clustering uncertainties. Although the counts differ, the average colors of the field galaxies agree well. The extinction implied by the average color difference between the GRB field and the reference galaxies is A_V = 0.6 mag, with a dispersion in the estimated extinction from the four reference fields of only 0.1 mag. All our estimates are in good agreement with the value of 0.81\pm0.27 mag obtained by Burstein & Heiles, and with the extinction of 0.78\pm0.12 measured by Schlegel et al. from maps of dust IR emission. However, the discrepancy between the widely varying counts and the very stable colors in these high-latitude fields is worth investigating.Comment: 14 pages, 2 figures; submitted to the Astrophysical Journa

    The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions

    Full text link
    The highly anisotropic distribution and apparent alignment of the Galactic satellites in polar great planes begs the question how common such distributions are. The satellite system of M31 is the only nearby system for which we currently have sufficiently accurate distances to study the three-dimensional satellite distribution. We present the spatial distribution of the 15 presently known M31 companions in a coordinate system centered on M31 and aligned with its disk. Through a detailed statistical analysis we show that the full satellite sample describes a plane that is inclined by -56 deg with respect to the poles of M31 and that has an r.m.s. height of 100 kpc. With 88% the statistical significance of this plane is low and it is unlikely to have a physical meaning. The great stellar stream found near Andromeda is inclined to this plane by 7 deg. There is little evidence for a Holmberg effect. If we confine our analysis to early-type dwarfs, we find a best-fit polar plane within 5 deg to 7 deg from the pole of M31. This polar great plane has a statistical significance of 99.3% and includes all dSphs (except for And II), M32, NGC 147, and PegDIG. The r.m.s. distance of these galaxies from the polar plane is 16 kpc. The nearby spiral M33 has a distance of only about 3 kpc from this plane, which points toward the M81 group. We discuss the anisotropic distribution of M31's early-type companions in the framework of three scenarios, namely as remnants of the break-up of a larger progenitor, as tracer of a prolate dark matter halo, and as tracer of collapse along large-scale filaments. (Abridged)Comment: 14 pages, 5 figures, accepted for publication in the Astronomical Journa

    The Distribution of Satellite Galaxies in a Lambda-CDM Universe

    Full text link
    We compute the locations of satellite galaxies with respect to their hosts using the Lambda-CDM GIF simulation. If the major axes of the hosts' images are perfectly aligned with the major axes of their projected mass, the satellites are located preferentially close to the hosts' major axes. In this case, the degree of anisotropy in the satellite locations is a good tracer of the flattening of the hosts' halos. If all hosts have luminous circular disks, the symmetry axes of the projected mass and light are not perfectly aligned, and the locations of the satellites depend upon how the hosts' disks are placed within their halos. If the disk angular momentum vectors are aligned with the major axes of the halos, the satellites show a pronounced "Holmberg effect". If the disk angular momentum vectors are aligned with the intermediate axes of the local large scale structure, the distribution of satellite locations is essentially isotropic. If the disk angular momentum vectors are aligned with either the minor axes or with the net angular momentum vectors of the halos, the satellites are distributed anisotropically about their hosts, with a preference for being found nearby the hosts' major axes. This agrees well with the observation that satellite galaxies in the Sloan Digital Sky Survey tend to be found nearby the major axes of their hosts, and suggests that the mass and light of SDSS host galaxies must be fairly well aligned in projection on the sky.Comment: ApJ, in press; substantial revision of text but main results are unchanged; revised paper includes the locations of satellites when the host angular momentum vector is aligned with either the halo major axis or the halo net angular momentu
    • 

    corecore