209 research outputs found

    Conditions for Successful Extended Inflation

    Full text link
    We investigate, in a model-independent way, the conditions required to obtain a satisfactory model of extended inflation in which inflation is brought to an end by a first-order phase transition. The constraints are that the correct present strength of the gravitational coupling is obtained, that the present theory of gravity is satisfactorily close to general relativity, that the perturbation spectra from inflation are compatible with large scale structure observations and that the bubble spectrum produced at the phase transition doesn't conflict with the observed level of microwave background anisotropies. We demonstrate that these constraints can be summarized in terms of the behaviour in the conformally related Einstein frame, and can be compactly illustrated graphically. We confirm the failure of existing models including the original extended inflation model, and construct models, albeit rather contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include extra references, results unchanged, to appear Phys Rev

    Axions and their Relatives

    Get PDF
    A review of the status of axions and axion-like particles is given. Special attention is devoted to the recent results of the PVLAS collaboration, which are in conflict with the CAST data and with the astrophysical constraints. Solutions to the puzzle and the implications for new physics are discussed. The question of axion-like particles being dark matter is also addressed.Comment: Updated version of an invited talk at the Axion Training (CERN, December 2005). To appear as a Lecture Notes in Physics (Springer-Verlag), edited by B. Beltran, M. Kuster and G. Raffel

    Gravitational excitons from extra dimensions

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold are investigated under dimensional reduction. In the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an effective potential have a form of massive scalar fields in the external space-time. Parameters of models which ensure minima of the effective potentials are obtained for particular cases and masses of gravitational excitons are estimated.Comment: Revised version --- 12 references added, Introduction enlarged, 20 pages, LaTeX, to appear in Phys.Rev.D56 (15.11.97

    The Rolling Tachyon as a Matrix Model

    Full text link
    We express all correlation functions in timelike boundary Liouville theory as unitary matrix integrals and develop efficient techniques to evaluate these integrals. We compute large classes of correlation functions explicitly, including an infinite number of terms in the boundary state of the rolling tachyon. The matrix integrals arising here also determine the correlation functions of gauge invariant operators in two dimensional Yang-Mills theory, suggesting an equivalence between the rolling tachyon and QCD_2.Comment: 22pages. 3 figures. v2: added reference, fixed minor typo

    On Physical Equivalence between Nonlinear Gravity Theories

    Full text link
    We argue that in a nonlinear gravity theory, which according to well-known results is dynamically equivalent to a self-gravitating scalar field in General Relativity, the true physical variables are exactly those which describe the equivalent general-relativistic model (these variables are known as Einstein frame). Whenever such variables cannot be defined, there are strong indications that the original theory is unphysical. We explicitly show how to map, in the presence of matter, the Jordan frame to the Einstein one and backwards. We study energetics for asymptotically flat solutions. This is based on the second-order dynamics obtained, without changing the metric, by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the ADM energy is positive for solutions close to flat space. The proof of this Positive Energy Theorem relies on the existence of the Einstein frame, since in the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199

    Gravitino constraints on models of neutrino masses and leptogenesis

    Get PDF
    In the supersymmetric extensions of the standard model, neutrino masses and leptogenesis requires existence of new particles. We point out that if these particles with lepton number violating interactions have standard model gauge interactions, then they may not be created after reheating because of the gravitino problem. This will rule out all existing models of neutrino masses and leptogenesis, except the one with right-handed singlet neutrinos.Comment: 12 pages latex file with one postscript figur

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Cluster Analysis of Cardiovascular Phenotypes in Patients With Type 2 Diabetes and Established Atherosclerotic Cardiovascular Disease: A Potential Approach to Precision Medicine

    Get PDF
    OBJECTIVE Phenotypic heterogeneity among patients with type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD) is ill defined. We used cluster analysis machine-learning algorithms to identify phenotypes among trial participants with T2DM and ASCVD. RESEARCH DESIGN AND METHODS We used data from the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS) study (n = 14,671), a cardiovascular outcome safety trial comparing sitagliptin with placebo in patients with T2DM and ASCVD (median follow-up 3.0 years). Cluster analysis using 40 baseline variables was conducted, with associations between clusters and the primary composite outcome (cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina) assessed by Cox proportional hazards models. We replicated the results using the Exenatide Study of Cardiovascular Event Lowering (EXSCEL) trial. RESULTS Four distinct phenotypes were identified: Cluster I included Caucasian men with a high prevalence of coronary artery disease; cluster II included Asian patients with a low BMI; cluster III included women with noncoronary ASCVD disease; and cluster IV included patients with heart failure and kidney dysfunction. The primary outcome occurred, respectively, in 11.6%, 8.6%, 10.3%, and 16.8% of patients in clusters I to IV. The crude difference in cardiovascular risk for the highest versus lowest risk cluster (cluster IV vs. II) was statistically significant (hazard ratio 2.74 [95% CI 2.29–3.29]). Similar phenotypes and outcomes were identified in EXSCEL. CONCLUSIONS In patients with T2DM and ASCVD, cluster analysis identified four clinically distinct groups. Further cardiovascular phenotyping is warranted to inform patient care and optimize clinical trial designs
    • …
    corecore