182 research outputs found

    Multilateral inversion of A_r, C_r and D_r basic hypergeometric series

    Full text link
    In [Electron. J. Combin. 10 (2003), #R10], the author presented a new basic hypergeometric matrix inverse with applications to bilateral basic hypergeometric series. This matrix inversion result was directly extracted from an instance of Bailey's very-well-poised 6-psi-6 summation theorem, and involves two infinite matrices which are not lower-triangular. The present paper features three different multivariable generalizations of the above result. These are extracted from Gustafson's A_r and C_r extensions and of the author's recent A_r extension of Bailey's 6-psi-6 summation formula. By combining these new multidimensional matrix inverses with A_r and D_r extensions of Jackson's 8-phi-7 summation theorem three balanced very-well-poised 8-psi-8 summation theorems associated with the root systems A_r and C_r are derived.Comment: 24 page

    A new multivariable 6-psi-6 summation formula

    Full text link
    By multidimensional matrix inversion, combined with an A_r extension of Jackson's 8-phi-7 summation formula by Milne, a new multivariable 8-phi-7 summation is derived. By a polynomial argument this 8-phi-7 summation is transformed to another multivariable 8-phi-7 summation which, by taking a suitable limit, is reduced to a new multivariable extension of the nonterminating 6-phi-5 summation. The latter is then extended, by analytic continuation, to a new multivariable extension of Bailey's very-well-poised 6-psi-6 summation formula.Comment: 16 page

    Universality and Critical Phenomena in String Defect Statistics

    Get PDF
    The idea of biased symmetries to avoid or alleviate cosmological problems caused by the appearance of some topological defects is familiar in the context of domain walls, where the defect statistics lend themselves naturally to a percolation theory description, and for cosmic strings, where the proportion of infinite strings can be varied or disappear entirely depending on the bias in the symmetry. In this paper we measure the initial configurational statistics of a network of string defects after a symmetry-breaking phase transition with initial bias in the symmetry of the ground state. Using an improved algorithm, which is useful for a more general class of self-interacting walks on an infinite lattice, we extend the work in \cite{MHKS} to better statistics and a different ground state manifold, namely RP2\R P^2, and explore various different discretisations. Within the statistical errors, the critical exponents of the Hagedorn transition are found to be quite possibly universal and identical to the critical exponents of three-dimensional bond or site percolation. This improves our understanding of the percolation theory description of defect statistics after a biased phase transition, as proposed in \cite{MHKS}. We also find strong evidence that the existence of infinite strings in the Vachaspati Vilenkin algorithm is generic to all (string-bearing) vacuum manifolds, all discretisations thereof, and all regular three-dimensional lattices.Comment: 62 pages, plain LaTeX, macro mathsymb.sty included, figures included. also available on http://starsky.pcss.maps.susx.ac.uk/groups/pt/preprints/96/96011.ps.g

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Gravitational excitons from extra dimensions

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold are investigated under dimensional reduction. In the Einstein conformal frame, small excitations of the scale factors of the internal spaces near minima of an effective potential have a form of massive scalar fields in the external space-time. Parameters of models which ensure minima of the effective potentials are obtained for particular cases and masses of gravitational excitons are estimated.Comment: Revised version --- 12 references added, Introduction enlarged, 20 pages, LaTeX, to appear in Phys.Rev.D56 (15.11.97

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Low-energy cutoffs in electron spectra of solar flares: statistical survey

    Full text link
    The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) X-ray data base (February 2002 -- May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularised inversion technique, we determine the mean electron flux distribution from count spectra of a selection of events with flat photon spectra in the 15--20 keV energy range. Such spectral behaviour is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range, e.g. a low-energy cutoff in the mean electron spectra of non-themal particles. We have found 18 cases which exhibit a statistically significant local minimum (a dip) in the range of 10--20 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction was applied, all low-energy cutoffs in the mean electron spectrum were removed and hence the low energy cutoffs in the mean electron spectrum of solar flares above \sim12 keV cannot be viewed as real features in the electron spectrum. If low-energy cutoffs exist in the mean electron spectra, the energy of low energy cutoffs should be less than \sim12 keV.Comment: 9 pages, 5 figures, submitted to Solar Physic

    Exploring the Possible Impact of Unbalanced Open-Label Drop-In of Glucose-Lowering Medications on EXSCEL Outcomes

    Get PDF
    Background: EXSCEL (Exenatide Study of Cardiovascular Event Lowering) assessed the impact of once-weekly exenatide 2 mg versus placebo in patients with type 2 diabetes mellitus, while aiming for glycemic equipoise. Consequently, greater drop-in of open-label glucose-lowering medications occurred in the placebo group. Accordingly, we explored the potential effects of their unbalanced use on major adverse cardiovascular events (MACE), defined as cardiovascular death, nonfatal myocardial infarction or nonfatal stroke, and all-cause mortality (ACM), given that some of these agents are cardioprotective. Methods: Cox hazard models were performed by randomized treatment for drug classes where >5% open-label drop-in glucose-lowering medication occurred, and for glucagon-like peptide-1 receptor agonists (GLP-1 RAs; 3.0%) using three methodologies: drop-in visit right censoring, inverse probability for treatment weighting (IPTW), and applying drug class risk reductions. Results: Baseline glucose-lowering medications for the 14 752 EXSCEL participants (73.1% with previous cardiovascular disease) did not differ between treatment groups. During median 3.2 years follow-up, open-label drop-in occurred in 33.4% of participants, more frequently with placebo than exenatide (38.1% versus 28.8%), with metformin (6.1% versus 4.9%), sulfonylurea (8.7% versus 6.9%), dipeptidyl peptidase-4 inhibitors (10.6% versus 7.5%), SGLT-2i (10.3% versus 8.1%), GLP-1 RA (3.4% versus 2.4%), and insulin (13.8% versus 9.4%). The MACE effect size was not altered meaningfully by right censoring, but the favorable HR for exenatide became nominally significant in the sulfonylurea and any glucose-lowering medication groups, while the ACM HR and p-values were essentially unchanged. IPTW decreased the MACE HR from 0.91 (P=0.061) to 0.85 (P=0.008) and the ACM HR from 0.86 (P=0.016) to 0.81 (P=0.012). Application of literature-derived risk reductions showed no meaningful changes in MACE or ACM HRs or P values, although simulations of substantially greater use of drop-in cardioprotective glucose-lowering agents demonstrated blunting of signal detection. Conclusions: EXSCEL-observed HRs for MACE and ACM remained robust after right censoring or application of literature-derived risk reductions, but the exenatide versus placebo MACE effect size and statistical significance were increased by IPTW. Effects of open-label drop-in cardioprotective medications need to be considered carefully when designing, conducting, and analyzing cardiovascular outcome trials of glucose-lowering agents under the premise of glycemic equipoise. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01144338

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore