102 research outputs found

    Heritability of DNA-damage-induced apoptosis and its relationship with age in lymphocytes from female twins

    Get PDF
    Apoptosis is a physiological form of cell death important in normal processes such as morphogenesis and the functioning of the immune system. In addition, defects in the apoptotic process play a major role in a number of important areas of disease, such as autoimmune diseases and cancer. DNA-damage-induced apoptosis plays a vital role in the maintenance of genomic stability by the removal of damaged cells. Previous studies of the apoptotic response (AR) to radiation-induced DNA damage of lymphoid cells from individuals carrying germline TP53 mutations have demonstrated a defective AR compared with normal controls. We have also previously demonstrated that AR is reduced as individuals age. Results from the current study on 108 twins aged 18–80 years confirm these earlier findings that the AR of lymphoid cells to DNA damage is significantly reduced with increasing age. In addition this twin study shows, for the first time, that DNA-damage-induced AR has a strong degree of heritability of 81% (95% confidence interval 67–89%). The vital role of DNA-damage-induced apoptosis in maintaining genetic stability, its relationship with age and its strong heritability underline the importance of this area of biology and suggest areas for further study

    Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas

    Get PDF
    The MTA1 gene is a recently identified novel candidate breast cancer metastasis-associated gene which has been implicated in the signal transduction or regulation of gene expression. We examined the mRNA expression levels of the MTA1, the human homologue of the rat mta1 gene in 47 surgically resected oesophageal squamous cell carcinomas by quantitative reverse transcription polymerase chain reaction. The relative overexpression of MTA1 mRNA (tumour/normal ratio β‰₯ 2) was observed in 16 out of 47 (34.0%) oesophageal carcinomas. Oesophageal tumours overexpressing MTA1 mRNA (T/N ratio β‰₯ 2) showed significantly higher frequencies of adventitial invasion (P < 0.05) and lymph node metastasis (P < 0.05), and tended to have a higher rate of lymphatic involvement than the remaining tumours. Thus, the data suggest that the MTA1 gene might play an important role in invasion and metastasis of oesophageal carcinomas. Β© 1999 Cancer Research Campaig

    TP53 mutations, amplification of P63 and expression of cell cycle proteins in squamous cell carcinoma of the oesophagus from a low incidence area in Western Europe

    Get PDF
    In Europe, high incidence rates of oesophageal squamous cell carcinoma (SCCE) are observed in western France (Normandy and Brittany) and in north-eastern Italy. Analysis of TP53 mutations in tumours from these regions has shown a high prevalence of mutations at A:T basepairs that may result from DNA damage caused by specific mutagens. However, the spectrum of TP53 mutations in regions of low incidence is unknown. We report here TP53 mutation analysis in 33 SCCE collected in Lyon, an area of low incidence. These tumours were also examined for MDM2 and P63 amplification, and for expression of p16INK4a/CDKN2a, cyclin E, p27Kipland Cox2. TP53 mutations were detected in 36% of the cases (12/33). In contrast with regions of high incidence, the mutation spectrum did not show a high prevalence of mutations at A:T base pairs. P63 was amplified in 5/32 cases tested (15.5%). No amplification of MDM2 was found. Expression studies revealed frequent loss of p16INK4a/CDKN2a(46%) and p27Kipl(25%) expression, and frequent overexpression of Cyclin E (70%) and Cox2 (42%). Overall, these results indicate that in Europe, SCCE from areas of high and low incidence present a similar pattern of molecular alterations but differ by the type of TP53 mutations. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus

    Get PDF
    The goal of this study is to clarify whether the expression of metallothionein (MT) could affect the prognosis and the metastatic potential of squamous cell carcinoma (SCC) of the oesophagus. In paraffin-embedded specimens resected from 57 patients, MT mRNA and protein expressions were detected by in situ hybridization and immunohistochemistry respectively. The expression of MT was evaluated in respect of clinicopathologic variables and patients' survival. MT mRNA expression was significantly associated with the proportion of lymph node metastasis (71% in MT mRNA-positive tumours vs 42% in MT mRNA-negative tumours; P = 0.0343) and that of distant metastasis (29% in MT mRNA-positive tumours vs 5% in MT mRNA-negative tumours; P = 0.0452). In respect of MT protein expression, the frequency of distant metastasis was more common in MT-positive tumours than in MT-negative tumours (30% in MT-positive tumours vs 8% in MT-negative tumours; P = 0.0446). The survival rate of the patients with MT protein-negative tumours was significantly better than that of the patients with MT protein-positive tumours (P = 0.0340). There was a positive correlation between the expression of MT protein and that of proliferating cell nuclear antigen (P = 0.0018). Therefore, we conclude that MT expression, both at the mRNA and protein levels, may be a potential marker predicting metastatic and proliferative activities of oesophageal SCC. Β© 1999 Cancer Research Campaig

    Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer

    Get PDF
    Background: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. Methods: A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Results: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. Conclusion: aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC

    Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C

    Get PDF
    Although the oxidative stress frequently occurs in patients with chronic hepatitis C, its role in future hepatocellular carcinoma (HCC) development is unknown. Hepatic 8-hydroxydeoxyguanosine (8-OHdG) was quantified using liver biopsy samples from 118 naΓ―ve patients who underwent liver biopsy from 1995 to 2001. The predictability of 8-OHdG for future HCC development and its relations to epidemiologic, biochemical and histological baseline characteristics were evaluated. During the follow-up period (mean was 6.7Β±3.3 years), HCC was identified in 36 patients (30.5%). Univariate analysis revealed that 16 variables, including 8-OHdG counts (65.2Β±20.2 vs 40.0Β±23.5 cells per 105 μm2, P<0.0001), were significantly different between patients with and without HCC. Cox proportional hazard analysis showed that the hepatic 8-OHdG (P=0.0058) and fibrosis (P=0.0181) were independent predicting factors of HCC. Remarkably, 8-OHdG levels were positively correlated with body and hepatic iron storage markers (vs ferritin, P<0.0001 vs hepatic iron score, P<0.0001). This study showed that oxidative DNA damage is associated with increased risk for HCC and hepatic 8-OHdG levels are useful as markers to identify the extreme high-risk subgroup. The strong correlation between hepatic DNA damage and iron overload suggests that the iron content may be a strong mediator of oxidative stress and iron reduction may reduce HCC incidence in patients with chronic hepatitis C

    Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germline heterozygotes

    Get PDF
    The association of p53 codon 72 polymorphism with cancer has been investigated by several scientific groups with controversial results. In the present study, we examined the genotypic frequency of this polymorphism in 54 patients with advanced lung cancer and 99 normal controls from the geographical region of Greece. Sputum and bronchial washing samples from each patient were assayed for the presence of human papillomavirus. Codon 72 heterozygous (Arg/Pro) patients were also analysed for loss of heterozygosity at the TP53 locus, in order to determine the lost p53 allele (Arg or Pro). p53 Arg/Arg genotype was significantly increased in lung cancer patients compared to normal controls (50% vs 24.2%, P<0.002). Human papillomavirus was detected only in two patients (3.7%). Loss of heterozygosity at the TP53 locus was found in 14 out of 27 Arg/Pro patients (51.85%). The Pro allele was lost in 11 cases (78.6%), while the Arg allele was lost in three (21.4%). Our results suggest that p53 codon 72 Arg homozygosity is associated with advanced lung cancer, and that the Arg allele is preferentially retained in patients heterozygous for this polymorphism. On the other hand, human papillomavirus infection does not seem to play an important role in lung carcinogenesis

    Loss of p53 in quaking viable mice leads to Purkinje cell defects and reduced survival

    Get PDF
    The qkv mutation is a one megabase deletion resulting in abnormal expression of the qkI gene. qkv mice exhibit hypomyelination of the central nervous system and display rapid tremors and seizures as adults. The qkI locus on 6q26-27 has also been implicated as a candidate tumor suppressor gene as the qkI locus maps to a region of genetic instability in Glioblastoma Multiforme (GBM), an aggressive brain tumor of astrocytic lineage. As GBM frequently harbors mutations affecting p53, we crossbred qkv and p53 mutant mice to examine whether qkv mice on a p53βˆ’/βˆ’ background have an increased incidence of GBM. qkv/v; p53βˆ’/βˆ’ mice had a reduced survival rate compared to p53βˆ’/βˆ’ littermates, and the cause of death of the majority of the mice remains unknown. In addition, immunohistochemistry revealed Purkinje cell degeneration in the cerebellum. These results suggest that p53 and qkI are genetically linked for neuronal maintenance and survival

    The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets

    Study of p53 gene alteration as a biomarker to evaluate the malignant risk of Lugol-unstained lesion with non-dysplasia in the oesophagus

    Get PDF
    Mutations of the p53 gene are detected frequently in oesophageal dysplasia and cancer. It is unclear whether Lugol-unstained lesions (LULs) with non-dysplastic epithelium (NDE) are precursors of oesophageal squamous cell carcinoma (ESCC). To study the genetic alterations of NDE in the multistep process of oesophageal carcinogenesis, we determined the relationship between p53 mutations and LULs-NDE. Videoendoscopy with Lugol staining was performed prospectively in 542 oesophageal cancer-free subjects. Lugol-unstained lesions were detected in 103 subjects (19%). A total of 255 samples, including 152 LULs (NDE, 137; dysplasia, 15) and 103 paired samples of normal staining epithelium, were obtained from 103 subjects. After extraction of DNA and polymerase chain reaction analysis, direct sequencing method was applied to detect mutations of the p53 gene. The p53 mutation was detected in five of 137 samples with LULs-NDE (4%) and in five of 15 samples with dysplasia (33%). A hotspot mutation was found in 20% of LULs-NDE with p53 mutation and in 40% of dysplasia with p53 mutation. In contrast, no p53 mutations were found in 103 paired NDE samples with normal Lugol staining. In biopsy samples from oesophageal cancer-free individuals, the p53 missense mutations containing a hotspot mutation were found in NDE, which was identified as an LUL. These findings suggest that some LULs-NDE may represent the earliest state of oesophageal squamous cell carcinoma in Japanese individuals
    • …
    corecore