706 research outputs found

    Brain enlargement and dental reduction were not linked in hominin evolution

    Get PDF
    The large brain and small postcanine teeth of modern humans are among our most distinctive features, and trends in their evolution are well studied within the hominin clade. Classic accounts hypothesize that larger brains and smaller teeth coevolved because behavioral changes associated with increased brain size allowed a subsequent dental reduction. However, recent studies have found mismatches between trends in brain enlargement and posterior tooth size reduction in some hominin species. We use a multiple-variance Brownian motion approach in association with evolutionary simulations to measure the tempo and mode of the evolution of endocranial and dental size and shape within the hominin clade. We show that hominin postcanine teeth have evolved at a relatively consistent neutral rate, whereas brain size evolved at comparatively more heterogeneous rates that cannot be explained by a neutral model, with rapid pulses in the branches leading to later Homo species. Brain reorganization shows evidence of elevated rates only much later in hominin evolution, suggesting that fast-evolving traits such as the acquisition of a globular shape may be the result of direct or indirect selection for functional or structural traits typical of modern humans

    Circadian patterns of Wikipedia editorial activity: A demographic analysis

    Get PDF
    Wikipedia (WP) as a collaborative, dynamical system of humans is an appropriate subject of social studies. Each single action of the members of this society, i.e. editors, is well recorded and accessible. Using the cumulative data of 34 Wikipedias in different languages, we try to characterize and find the universalities and differences in temporal activity patterns of editors. Based on this data, we estimate the geographical distribution of editors for each WP in the globe. Furthermore we also clarify the differences among different groups of WPs, which originate in the variance of cultural and social features of the communities of editors

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation in ADAM33 has been shown to be important in the development of asthma and altered lung function. This relationship however, has not been investigated in the population susceptible to COPD; long term tobacco smokers. We evaluated the association between polymorphisms in ADAM33 gene with COPD and lung function in long term tobacco smokers.</p> <p>Methods</p> <p>Caucasian subjects, at least 50 year old, who smoked ≥ 20 pack-years (n = 880) were genotyped for 25 single nucleotide polymorphisms (SNPs) in ADAM33. COPD was defined as an FEV1/FVC ratio < 70% and percent-predicted (pp)FEV1 < 75% (n = 287). The control group had an FEV1/FVC ratio ≥ 70% and ppFEV<sub>1 </sub>≥ 80% (n = 311) despite ≥ 20 pack years of smoking. Logistic and linear regressions were used for the analysis. Age, sex, and smoking status were considered as potential confounders.</p> <p>Results</p> <p>Five SNPs in ADAM33 were associated with COPD (Q-1, intronic: p < 0.003; S1, Ile → Val: p < 0.003; S2, Gly → Gly: p < 0.04; V-1 intronic: p < 0.002; V4, in 3' untranslated region: p < 0.007). Q-1, S1 and V-1 were also associated with ppFEV1, FEV1/FVC ratio and ppFEF25–75 (p values 0.001 – 0.02). S2 was associated with FEV1/FVC ratio (p < 0.05). The association between S1 and residual volume revealed a trend toward significance (p value < 0.07). Linkage disequilibrium and haplotype analyses suggested that S1 had the strongest degree of association with COPD and pulmonary function abnormalities.</p> <p>Conclusion</p> <p>Five SNPs in ADAM33 were associated with COPD and lung function in long-term smokers. Functional studies will be needed to evaluate the biologic significance of these polymorphisms in the pathogenesis of COPD.</p

    Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E<sub>2</sub>) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E<sub>2 </sub>to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E<sub>2 </sub>in their brains than females.</p> <p>Results</p> <p>Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain.</p> <p>Conclusions</p> <p>Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E<sub>2 </sub>metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.</p

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection

    Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids are small molecule hormones derived from cholesterol. Steroids affect many tissues, including the brain. In the zebra finch, estrogenic steroids are particularly interesting because they masculinize the neural circuit that controls singing and their synthesis in the brain is modulated by experience. Here, we analyzed the zebra finch genome assembly to assess the content, conservation, and organization of genes that code for components of the estrogen-synthetic pathway and steroid nuclear receptors. Based on these analyses, we also investigated neural expression of a cholesterol transport protein gene in the context of song neurobiology.</p> <p>Results</p> <p>We present sequence-based analysis of twenty steroid-related genes using the genome assembly and other resources. Generally, zebra finch genes showed high homology to genes in other species. The diversity of steroidogenic enzymes and receptors may be lower in songbirds than in mammals; we were unable to identify all known mammalian isoforms of the 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase families in the zebra finch genome assembly, and not all splice sites described in mammals were identified in the corresponding zebra finch genes. We did identify two factors, Nobox and NR1H2-RXR, that may be important for coordinated transcription of multiple steroid-related genes. We found very little qualitative overlap in predicted transcription factor binding sites in the genes for two cholesterol transport proteins, the 18 kDa cholesterol transport protein (TSPO) and steroidogenic acute regulatory protein (StAR). We therefore performed in situ hybridization for TSPO and found that its mRNA was not always detected in brain regions where StAR and steroidogenic enzymes were previously shown to be expressed. Also, transcription of TSPO, but not StAR, may be regulated by the experience of hearing song.</p> <p>Conclusions</p> <p>The genes required for estradiol synthesis and action are represented in the zebra finch genome assembly, though the complement of steroidogenic genes may be smaller in birds than in mammals. Coordinated transcription of multiple steroidogenic genes is possible, but results were inconsistent with the hypothesis that StAR and TSPO mRNAs are co-regulated. Integration of genomic and neuroanatomical analyses will continue to provide insights into the evolution and function of steroidogenesis in the songbird brain.</p

    A Precise Bicoid Gradient Is Nonessential during Cycles 11–13 for Precise Patterning in the Drosophila Blastoderm

    Get PDF
    Background: During development, embryos decode maternal morphogen inputs into highly precise zygotic gene expression. The discovery of the morphogen Bicoid and its profound effect on developmental programming in the Drosophila embryo has been a cornerstone in understanding the decoding of maternal inputs. Bicoid has been described as a classical morphogen that forms a concentration gradient along the antero-posterior axis of the embryo by diffusion and initiates expression of target genes in a concentration-dependent manner in the syncytial blastoderm. Recent work has emphasized the stability of the Bicoid gradient as a function of egg length and the role of nuclear dynamics in maintaining the Bicoid gradient. Bicoid and nuclear dynamics were observed but not modulated under the ideal conditions used previously. Therefore, it has not been tested explicitly whether a temporally stable Bicoid gradient prior to cellularization is required for precise patterning. Principal Findings: Here, we modulate both nuclear dynamics and the Bicoid gradient using laminar flows of different temperature in a microfluidic device to determine if stability of the Bicoid gradient prior to cellularization is essential for precise patterning. Dramatic motion of both cytoplasm and nuclei was observed prior to cellularization, and the Bicoid gradient was disrupted by nuclear motion and was highly abnormal as a function of egg length. Despite an abnormal Bicoid gradient during cycles 11–13, Even-skipped patterning in these embryos remained precise. Conclusions: These results indicate that the stability of the Bicoid gradient as a function of egg length is nonessential during syncytial blastoderm stages. Further, presumably no gradient formed by simple diffusion on the scale of egg length could be responsible for the robust antero-posterior patterning observed, as severe cytoplasmic and nuclear motion would disrupt such a gradient. Additional mechanisms for how the embryo could sense its dimensions and interpret the Bicoid gradient are discussed

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-
    corecore