88 research outputs found

    Potent interaction of flavopiridol with MRP1

    Get PDF
    The multidrug resistance protein 1 (MRP1) is an ATP-dependent transport protein for organic anions, as well as neutral or positively charged anticancer agents. In this study we show that flavopiridol, a synthetic flavonoid currently studied in phase 1 trials for its anti-proliferative characteristics, interacts with MRP1 in a potent way. Flavopiridol, as well as other (iso)flavonoids stimulate the ATPase activity of MRP1 in a dose-dependent way at low micromolar concentrations. A new specific monoclonal antibody against MRP1 (MIB6) inhibits the (iso)flavonoid-induced ATPase activity of plasma membrane vesicles prepared from the MRP1 overexpressing cell line GLC4/ADR. The accumulation of daunorubicin in GLC4/ADR cells is increased by flavopiridol and by other non-glycosylated (iso)flavonoids that interact with MRP1 ATPase activity. However, flavopiridol is the only tested compound that affects the daunorubicin accumulation when present at concentrations below 1 μM. Glycosylated (iso)flavonoids do not affect MRP1-mediated transport or ATPase activity. Finally, MRP1 overexpressing and transfected cells are resistant to flavopiridol, but not to other (iso)flavonoids tested. These findings may be of relevance for the development of anticancer therapies with flavopiridol. © 1999 Cancer Research Campaig

    Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2)

    Get PDF
    Green tea, mainly through its constituents epigallocatechin gallate, epigallocatechin, epicatechin gallate and epicatechin, has demonstrated anticarcinogenic activity in several animal models, including those for skin, lung and gastro-intestinal tract cancer, although less is known about colorectal cancer. Quercetin, the major flavonoid present in vegetables and fruit, exerts potential anticarcinogenic effects in animal models and cell cultures, but less is known about quercetin glucosides. The objectives of this study were to investigate (i) the antioxidant activity of the phenolic compounds epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside; (ii) the cytotoxicity of different concentrations of epicatechin, epigallocatechin gallate, and gallic acid; (iii) the cellular uptake of epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside and (iv) their effect on the cell cycle. Human colon adenocarcinoma cells were used as experimental model. The results of this study indicate that all dietary flavonoids studied (epicatechin, epigallocatechin gallate, gallic acid and quercetin-3-glucoside) show a significant antioxidant effect in a chemical model system, but only epigallocatechin gallate or gallic acid are able to interfere with the cell cycle in Caco2 cell lines. These data suggest that the antioxidant activity of flavonoids is not related to the inhibition of cellular growth. From a structural point of view, the galloyl moiety appears to be required for both the antioxidant and the antiproliferative effects

    Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity

    Get PDF
    Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavone with putative ability to prevent cancer and cardiovascular diseases. Its metabolism was evaluated in rats and human. Rats received quercetin via the intravenous (i.v.) route and metabolites were isolated from the plasma, urine and bile. Analysis was by high-performance liquid chromatography and confirmation of species identity was achieved by mass spectrometry. Quercetin and isorhamnetin, the 3′-O-methyl analogue, were found in both the plasma and urine. In addition, several polar peaks were characterised as sulphated and glucuronidated conjugates of quercetin and isorhamnetin. Extension of the metabolism studies to a cancer patient who had received quercetin as an i.v. bolus showed that (Quercetin removed) isorhamnetin and quercetin 3′-O-sulphate were major plasma metabolites. As a catechol, quercetin can potentially be converted to a quinone and subsequently conjugated with glutathione (GSH). Oxidation of quercetin with mushroom tyrosinase in the presence of GSH furnished GSH conjugates of quercetin, two mono- and one bis-substituted conjugates. However, these species were not found in biomatrices in rats treated with quercetin. As cyclo-oxygenase-2 (COX-2) expression is mechanistically linked to carcinogenesis, we examined whether quercetin and its metabolites can inhibit COX-2 in a human colorectal cancer cell line (HCA-7). Isorhamnetin and its 4′-isomer tamarixetin were potent inhibitors, reflected in a 90% decrease in prostaglandin E-2 (PGE-2) levels, a marker of COX-2 activity. Quercetin was less effective, with a 50% decline. Quercetin 3- and 7-O-sulphate had no effect on PGE-2. The results indicate that quercetin may exert its pharmacological effects, at least in part, via its metabolites

    Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]

    Get PDF
    BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects

    Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration

    Get PDF
    Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related cognitive decline and neurodegenerative diseases. Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions responsible for memory. Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed, including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintaining optimal neuronal function and preventing age-related cognitive decline and neurodegeneration
    corecore