4,328 research outputs found

    Transport of Mars atmospheric water into high northern latitudes during a polar warming

    Get PDF
    Several numerical experiments were conducted with a simplified tracer transport model in order to attempt to examine the poleward transport of Mars atmospheric water during a polar warming like that which occurred during the winter solstice dust storm of 1977. The flow for the transport experiments was taken from numerical simulations with a nonlinear beta-plane dynamical model. Previous studies with this model have demonstrated that a polar warming having essential characteristics like those observed during the 1977 dust storm can be produced by a planetary wave mechanism analogous to that responsible for terrestrial sudden stratospheric warmings. Several numerical experiments intended to simulate water transport in the absence of any condensation were carried out. These experiments indicate that the flow during a polar warming can transport very substantial amounts of water to high northern latitudes, given that the water does not condense and fall out before reaching the polar region

    Numerical simulations of dust transport into northern high latitudes during a Martian polar warming

    Get PDF
    The formation and evolution of the polar laminated terrain depends on rates of dust transport to the polar caps. A simplified dynamical model is shown similar to models used to simulate terrestrial stratospheric polar warmings could simulate certain observed features of the circulation during Martian global dust storms. Model simulations of dust transport showed that substantial quantities of dust, enough to produce optical depths of approx. 1, could reach the pole during these storms

    An Examination of Fit and the Use of Mobile Devices for Performing Tasks

    Get PDF
    This research seeks to better understand an individual’s use of mobile devices and the matching fit between type of mobile device and activity. As mobile devices swiftly progress and alter individuals’ ways of interacting with technology, a more comprehensive understanding of how tasks are impacted may help ensure appropriate device selection. The ability for more targeted device selection may increase use and help mobile device users and designers avoid the pitfalls of pre-existing, traditional technology. Building on identified antecedents of success from the DeLone & McLean Information Systems Success Model and focusing on the measurement of hedonic and utilitarian tasks and Goodhue & Thompson’s Task-Technology Fit Model, the study was applied against four defined categories of mobile devices. The primary study used a survey to test a research model which examines task-technology fit in the context of mobile devices. A secondary feasibility study employed neurophysiological tools with a focused experiment to explore the impact of the technology and the nature of the task on fit. At present, this is one of the first studies that attempts to manipulate both task and technology in a study of fit yielding results for practitioner and researcher alike. Specifically, researchers will gain additional insight into users’ engagement with smartphones, tablets and mini-tablets for hedonic and utilitarian tasks. For practitioners, this study hopes to inform them of the types of tasks users are performing regularly and types of devices are being used. This work may assist in forming future device technical designs and specifications

    Extratropical Large-Scale Traveling Weather Systems in the Southern Hemisphere on Mars

    Get PDF
    From late-autumn through early-spring, the middle- and high-latitudes of both hemispheres of Mars and its predominantly carbon-dioxide atmosphere support mean equator-to-pole thermal contrasts, and then, support a strong mean westerly polar vortex. Observations from orbiting spacecraft indicate that this intense mean baroclinicity-barotropicity supports large-scale eastward traveling weather systems (i.e., transient, traveling synoptic-period waves, on the order of the Rossby deformation scale). On Earth, extratropical weather disturbances arise from wind-shear instabilities, and these are critical components of the terrestrial global circulation. So it is the case for Mars. Large-scale traveling weather systems on Mars serve as agents in the transport of heat, momentum and scalar and tracer quantities (e.g., atmospheric dust, watervapor, ice clouds, chemical species, etc). Such weather systems interact with other large-scale atmospheric circulation components, namely, quasi-stationary (i.e., forced Rossby) modes; global thermal tidal modes; and then, upon large-/continental- geographical scales, upslope/ down-slope flows amongst high relief, low relief, impact basins, and volcanic rises, and more. The character of Mars' traveling extratropical weather disturbances in its southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (i.e., Mars GCM), and one from the Agency's Mars Climate Modeling Center (MCMC) based at the NASA Ames Research Center. The climate model includes several complex atmospheric physical packages. With such physics modules, our global climate simulations present comparatively well with observations of the planet's current water cycle (Haberle et al.,2019). The climate model is "forced" with an annual dust cycle (i.e., nudged based on MGS/TES observations). Compared to the northern-hemisphere counterparts, the southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are investigated, in addition to large-scale up-slope/down-slope flows and the diurnal cycle. A southern storm zone in late winter and early spring presents in the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented

    Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Get PDF
    As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described

    Diagnosing risk factors alongside mass drug administration using serial diagnostic tests-which test first?

    Get PDF
    Background: When tests are used in series to determine individual risk factors and infection status in a mass drug administration (MDA), the diagnostics, test order and subsequent treatment decisions (the testing algorithm) affect population-level treatment coverage and cost, but there is no existing framework for evaluating which algorithm optimizes any given outcome. Methods: We present a mathematical tool (with spreadsheet implementation) to analyse the effect of test ordering, illustrated using treatment for onchocerciasis in an area where high-burden Loa loa co-infections present a known risk factor. Results: The prevalence of the infection and risk factor have a non-linear impact on the optimal ordering of tests. Testing for the MDA infection first always leaves more infected people untreated but fewer people with the risk factor being misclassified. The cost of the treatment given to infected individuals with the risk factor does not affect which algorithm is more cost effective. Conclusions: For a given test and treat algorithm and its costs, the correct strategy depends on the expected prevalence. In most cases, when the apparent prevalence of the target infection is greater than the apparent prevalence of the risk factor, it is cheaper to do the risk factor test first, and vice versa

    TOWARD AN UNDERSTANDING WHY USERS ENGAGE IN M-COMMERCE

    Get PDF
    This paper’s aim is to review the existing literature in M-Commerce adoption and propose a research model to examine the necessary factors for users to engage in mobile or M-Commerce. First, the stages of commerce are discussed and defined followed by a review of the Technology Acceptance Model and its application for E-Commerce and M-Commerce. Next is an examination of the antecedents and success factors needed for M-Commerce success. Finally, this paper offers a proposed research model for M-Commerce adoption

    Extratropical Cyclogenesis and Frontal Waves on Mars: Influences on Dust, Weather and the Planet's climate

    Get PDF
    Between late autumn and early spring, middle and high latitudes on Mars exhibit strong equatortopole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic periodwaves) [1,2]. For a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, these large-scale, extratropical weather disturbances are critical components of the global circulation. The wavelike disturbances act as agents in the transport of heat and momentum between low and high latitudes of the planet. Through cyclonic/anticyclonic winds, intense shear deformations, contractions-dilatations in temperature and density, and sharp perturbations amongst atmospheric tracers (i.e., dust, volatiles (e.g., water vapor) and condensates (e.g., water-ice cloud particles)), Mars extratropical weather systems have significant subsynoptic scale ramifications by supporting atmospheric frontal waves (Fig. 1)

    How effective is school-based deworming for the community-wide control of soil-transmitted helminths?

    Get PDF
    Background: The London Declaration on neglected tropical diseases was based in part on a new World Health Organization roadmap to “sustain, expand and extend drug access programmes to ensure the necessary supply of drugs and other interventions to help control by 2020”. Large drug donations from the pharmaceutical industry form the backbone to this aim, especially for soil-transmitted helminths (STHs) raising the question of how best to use these resources. Deworming for STHs is often targeted at school children because they are at greatest risk of morbidity and because it is remarkably cost-effective. However, the impact of school-based deworming on transmission in the wider community remains unclear. Methods: We first estimate the proportion of parasites targeted by school-based deworming using demography, school enrolment, and data from a small number of example settings where age-specific intensity of infection (either worms or eggs) has been measured for all ages. We also use transmission models to investigate the potential impact of this coverage on transmission for different mixing scenarios. Principal Findings: In the example settings <30% of the population are 5 to <15 years old. Combining this demography with the infection age-intensity profile we estimate that in one setting school children output as little as 15% of hookworm eggs, whereas in another setting they harbour up to 50% of Ascaris lumbricoides worms (the highest proportion of parasites for our examples). In addition, it is estimated that from 40–70% of these children are enrolled at school. Conclusions: These estimates suggest that, whilst school-based programmes have many important benefits, the proportion of infective stages targeted by school-based deworming may be limited, particularly where hookworm predominates. We discuss the consequences for transmission for a range of scenarios, including when infective stages deposited by children are more likely to contribute to transmission than those from adults
    • …
    corecore