950 research outputs found

    Constraints on fault and lithosphere rheology from the coseismic slip and postseismic afterslip of the 2006 M_w 7.0 Mozambique earthquake

    Get PDF
    The 2006 M_w 7.0 Mozambique (Machaze) normal-faulting earthquake ruptured an unusually steeply dipping fault plane (~75°). The amount of slip in the earthquake decreased from depths of ~10 km toward the surface, and this shallow slip deficit was at least partly recovered by postseismic afterslip on the shallow part of the fault plane. An adjacent normal fault segment slipped postseismically (and possibly also co-seismically) at shallow depths with a large strike-slip component, in response to the stresses generated by slip on the main earthquake fault plane. Our observations suggest that the fault zone behaves in a stick-slip manner in the crystalline basement, and that where it cuts the sedimentary layer the coseismic rupture was partially arrested and there was significant postseismic creep. We discuss the effects of such behavior on the large-scale tectonics of continental regions, and on the assessment of seismic hazard on similar fault systems. The steep dip of the fault suggests the re-activation of a preexisting structure with a coefficient of friction at least ~25–45% lower than that on optimally oriented planes, and analysis of the deformation following an aftershock indicates that the value of the parameter ‘a’ that describes the rate-dependence of fault friction lies in the range 1 × 10^(−3)–2 × 10^(−2). The lack of long-wavelength postseismic relaxation suggests viscosities in the ductile lithosphere of greater than ~2 × 10^(19) Pa s, and an examination of the tectonic geomorphology in the region identifies ways in which similar fault systems can be identified before they rupture in future earthquakes

    Subparallel thrust and normal faulting in Albania and the roles of gravitational potential energy and rheology contrasts in mountain belts

    Get PDF
    The active tectonics of Albania and surrounding regions, on the eastern margin of the Adriatic Sea, is characterized by subparallel thrust and normal faulting which, we suggest, is likely to be related to gravitational potential energy contrasts between the low-lying Adriatic Sea and the elevated mountainous areas inland. We calculate the magnitude of the force which the mountains and lowlands exert upon each other as a result of this potential energy contrast. It is likely that this force is largely supported by shear stresses on faults, and if so, the average stresses are less than ∼20 MPa. Alternatively, if the mountains are supported by stresses in the ductile part of the lithosphere, the stresses are likely to be ∼80–240 MPa in magnitude. The mountains of Albania are significantly lower than other ranges, such as the Peruvian Andes, which are thought to be extending in response to potential energy differences, and we discuss the relation between Albania and these other, higher, mountain belts from the perspective of differences in lithosphere rheology. We suggest that the lowlands of western Albania and the Adriatic Sea may have been weakened through time as a result of the deposition of large thicknesses of sediment, which lead to heating of the crystalline basement, a reduction in the potential energy contrast that could be supported by the lowlands, and so normal faulting in the mountains of eastern Albania

    The 2001 M_w 7.6 Bhuj earthquake, low fault friction, and the crustal support of plate driving forces in India

    Get PDF
    We present a source model for the 2001 M_w 7.6 Bhuj earthquake of northwest India. The slip distribution suggests a high stress drop (~35 MPa) and, together with the depth distribution of aftershocks, that the entire crust is seismogenic. We suggest that the active faults have an effective coefficient of friction of ~0.08, which is sufficient for the seismogenic crust to support the majority of the compressive force transmitted through the Indian lithosphere. This model is consistent with the midcrustal depth of the transition from extension to compression beneath the Ganges foreland basin where India underthrusts southern Tibet. If the coefficient of friction were the more traditional value of 0.6, the lithosphere would be required to support a net force roughly an order of magnitude higher than current estimates in order to match the observed depth of the neutral fiber

    How effective is school-based deworming for the community-wide control of soil-transmitted helminths?

    Get PDF
    Background: The London Declaration on neglected tropical diseases was based in part on a new World Health Organization roadmap to “sustain, expand and extend drug access programmes to ensure the necessary supply of drugs and other interventions to help control by 2020”. Large drug donations from the pharmaceutical industry form the backbone to this aim, especially for soil-transmitted helminths (STHs) raising the question of how best to use these resources. Deworming for STHs is often targeted at school children because they are at greatest risk of morbidity and because it is remarkably cost-effective. However, the impact of school-based deworming on transmission in the wider community remains unclear. Methods: We first estimate the proportion of parasites targeted by school-based deworming using demography, school enrolment, and data from a small number of example settings where age-specific intensity of infection (either worms or eggs) has been measured for all ages. We also use transmission models to investigate the potential impact of this coverage on transmission for different mixing scenarios. Principal Findings: In the example settings <30% of the population are 5 to <15 years old. Combining this demography with the infection age-intensity profile we estimate that in one setting school children output as little as 15% of hookworm eggs, whereas in another setting they harbour up to 50% of Ascaris lumbricoides worms (the highest proportion of parasites for our examples). In addition, it is estimated that from 40–70% of these children are enrolled at school. Conclusions: These estimates suggest that, whilst school-based programmes have many important benefits, the proportion of infective stages targeted by school-based deworming may be limited, particularly where hookworm predominates. We discuss the consequences for transmission for a range of scenarios, including when infective stages deposited by children are more likely to contribute to transmission than those from adults

    Deformation during the 1975–1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    Get PDF
    We measure the displacement field resulting from the 1975–1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977–2002 (2.5 m average opening over 80 km), while correlation of aerial photos between 1957–1990 provide measurements of the total extension (average 4.3 m opening over 80 km). Our results show ∼8 m of opening immediately north of Krafla caldera, decreasing to 3–4 m at the northern end of the rift. Correlation of aerial photos from 1957–1976 reveal a bi-modal pattern of opening along the rift during the early crisis, which may indicate either two different magma sources located at either end of the rift zone (a similar pattern of opening was observed in the 2005 Afar rift crisis in East Africa), or variations in rock strength along the rift. Our results provide new information on how past dike injection events accommodate long-term plate spreading, as well as providing more details on the Krafla rift crisis. This study also highlights the potential of optical image correlation using inexpensive declassified spy satellite and aerial photos to measure deformation of the Earth's surface going back many decades, thus providing a new tool for measuring Earth surface dynamics, e.g. glaciers, landsliding, coastal erosion, volcano monitoring and earthquake studies, when InSAR and GPS data are not available

    Temporal diversification of Central American cichlids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cichlid fishes are classic examples of adaptive radiation because of their putative tendency to explosively diversify after invading novel environments. To examine whether ecological opportunity increased diversification (speciation minus extinction) early in a species-rich cichlid radiation, we determined if Heroine cichlids experienced a burst of diversification following their invasion of Central America.</p> <p>Results</p> <p>We first reconstructed the Heroine phylogeny and determined the basal node to use as the root of Central American Heroine diversification. We then examined the influence of incomplete taxon sampling on this group's diversification patterns. First, we added missing species randomly to the phylogeny and assessed deviations from a constant rate of lineage accumulation. Using a range of species numbers, we failed to recover significant deviations from a pure-birth process and found little support for an early burst of diversification. Then, we examined patterns of lineage accumulation as nodes were increasingly truncated. We assumed that as we removed more recently diverged lineages that sampling would become more complete thereby increasing the power to detect deviations from a pure-birth model. However, truncation of nodes provided even less support for an early burst of diversification.</p> <p>Conclusions</p> <p>Contrary to expectations, our analyses suggest Heroine cichlids did not undergo a burst of diversification when they invaded from South America. Throughout their history in Central America, Heroine cichlids appear to have diversified at a constant rate.</p

    Revisiting Past Earthquakes and Seismo-Volcanic Crises Using Declassified Optical Satellite Imagery

    Get PDF
    Recent development of the user-friendly software package “Co-registration of Optically Sensed Images and Correlation” (COSI-Corr), which allows for automatic and precise ortho-rectification, co-registration, and sub-pixel correlation of pushbroom satellite and aerial images, has enabled Earth’s surface dynamics to be accurately monitored using optical imagery [1]. This technique compares two images of the Earth’s surface that were acquired at different times, and estimates any potential pixel shifts between them with an accuracy typically better than 1/10 of the pixel size. Correlation of both satellite and aerial images has been successfully used to identify coseismic ground ruptures and quantify fault offsets during large earthquakes [2]–[4], as well as monitoring sand dune migration, landsliding, ice flow [5] [6], and volcanic activity [7] [8]. In this study, we demonstrate that recently declassified US spy satellite images can be used to measure ground deformation resulting from seismotectonic and volcanic events using optical sub-pixel correlation. KH-9 Hexagon satellite images, with a swath size of 250×125 km, were acquired by the US government between 1971 and 1980, and are available for purchase from the United States Geological Survey (USGS) at small cost ($30 per image). During this period, around 29,000 images were acquired globally [9], providing a comprehensive record of the Earth’s surface at 6–9m resolution

    Revisiting Past Earthquakes and Seismo-Volcanic Crises Using Declassified Optical Satellite Imagery

    Get PDF
    Recent development of the user-friendly software package “Co-registration of Optically Sensed Images and Correlation” (COSI-Corr), which allows for automatic and precise ortho-rectification, co-registration, and sub-pixel correlation of pushbroom satellite and aerial images, has enabled Earth’s surface dynamics to be accurately monitored using optical imagery [1]. This technique compares two images of the Earth’s surface that were acquired at different times, and estimates any potential pixel shifts between them with an accuracy typically better than 1/10 of the pixel size. Correlation of both satellite and aerial images has been successfully used to identify coseismic ground ruptures and quantify fault offsets during large earthquakes [2]–[4], as well as monitoring sand dune migration, landsliding, ice flow [5] [6], and volcanic activity [7] [8]. In this study, we demonstrate that recently declassified US spy satellite images can be used to measure ground deformation resulting from seismotectonic and volcanic events using optical sub-pixel correlation. KH-9 Hexagon satellite images, with a swath size of 250×125 km, were acquired by the US government between 1971 and 1980, and are available for purchase from the United States Geological Survey (USGS) at small cost ($30 per image). During this period, around 29,000 images were acquired globally [9], providing a comprehensive record of the Earth’s surface at 6–9m resolution
    corecore