59 research outputs found

    A subradiant optical mirror formed by a single structured atomic layer

    No full text
    Efficient and versatile interfaces for the interaction of light with matter are an essential cornerstone for quantum science. A fundamentally new avenue of controlling light-matter interactions has been recently proposed based on the rich interplay of photon-mediated dipole-dipole interactions in structured subwavelength arrays of quantum emitters. Here we report on the direct observation of the cooperative subradiant response of a two-dimensional (2d) square array of atoms in an optical lattice. We observe a spectral narrowing of the collective atomic response well below the quantum-limited decay of individual atoms into free space. Through spatially resolved spectroscopic measurements, we show that the array acts as an efficient mirror formed by only a single monolayer of a few hundred atoms. By tuning the atom density in the array and by changing the ordering of the particles, we are able to control the cooperative response of the array and elucidate the interplay of spatial order and dipolar interactions for the collective properties of the ensemble. Bloch oscillations of the atoms out of the array enable us to dynamically control the reflectivity of the atomic mirror. Our work demonstrates efficient optical metamaterial engineering based on structured ensembles of atoms and paves the way towards the controlled many-body physics with light and novel light-matter interfaces at the single quantum level.Comment: 8 pages, 5 figures + 12 pages Supplementary Infomatio

    Floquet Prethermalization in a Bose-Hubbard System

    No full text
    Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived 'prethermal' regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems

    Quantum gas microscopy of Rydberg macrodimers

    Full text link
    A microscopic understanding of molecules is essential for many fields of natural sciences but their tiny size hinders direct optical access to their constituents. Rydberg macrodimers - bound states of two highly-excited Rydberg atoms - feature bond lengths easily exceeding optical wavelengths. Here we report on the direct microscopic observation and detailed characterization of such macrodimers in a gas of ultracold atoms in an optical lattice. The size of about 0.7 micrometers, comparable to the size of small bacteria, matches the diagonal distance of the lattice. By exciting pairs in the initial two-dimensional atom array, we resolve more than 50 vibrational resonances. Using our spatially resolved detection, we observe the macrodimers by correlated atom loss and demonstrate control of the molecular alignment by the choice of the vibrational state. Our results allow for precision testing of Rydberg interaction potentials and establish quantum gas microscopy as a powerful new tool for quantum chemistry.Comment: 13 pages, 9 figure

    Rydberg Macrodimers: Diatomic Molecules on the Micrometer Scale

    Get PDF
    Controlling molecular binding at the level of single atoms is one of the holy grails of quantum chemistry. Rydberg macrodimers -- bound states between highly excited Rydberg atoms -- provide a novel perspective in this direction. Resulting from binding potentials formed by the strong, long-range interactions of Rydberg states, Rydberg macrodimers feature bond lengths in the micrometer regime, exceeding those of conventional molecules by orders of magnitude. Using single-atom control in quantum gas microscopes, the unique properties of these exotic states can be studied with unprecedented control, including the response to magnetic fields or the polarization of light in their photoassociation. The high accuracy achieved in spectroscopic studies of macrodimers makes them an ideal testbed to benchmark Rydberg interactions, with direct relevance to quantum computing and information protocols where these are employed. This review provides a historic overview and summarizes the recent findings in the field of Rydberg macrodimers. Furthermore, it presents new data on interactions between macrodimers, leading to a phenomenon analogous to Rydberg blockade at the level of molecules, opening the path towards studying many-body systems of ultralong-range Rydberg molecules.Comment: 17 pages, 12 figure

    Extended Bose-Hubbard models with Rydberg macrodimer dressing

    Get PDF
    Extended Hubbard models have proven to bear novel quantum states, but their experimental realization remains challenging. In this work we propose to use bosonic quantum gases dressed with molecular bound states in Rydberg interaction potentials for the observation of these quantum states. We study the molecular Rabi coupling with respect to principal quantum number and trapping frequency of the ground state atoms for various molecular potentials of Rubidium and Potassium, and the hereby resulting dressed interaction strength. Additionally, we propose a two-color excitation scheme which significantly increases the dressed interaction and cancels AC Stark shifts limiting the atomic motion in the itinerant regime. We study the various equilibrium phases of the corresponding extended Bose-Hubbard model by means of the Cluster Gutzwiller approach and perform time evolution simulations via the Lindblad master equation. We find a supersolid phase by slowly ramping the molecular Rabi coupling of an initially prepared superfluid and discuss the role of dissipation.Comment: 11 pages, 7 figure

    A subwavelength atomic array switched by a single Rydberg atom

    Get PDF
    Enhancing light-matter coupling at the level of single quanta is essential for numerous applications in quantum science. The cooperative optical response of subwavelength atomic arrays was recently found to open new pathways for such strong light-matter couplings, while simultaneously offering access to multiple spatial modes of the light field. Efficient single-mode free-space coupling to such arrays has been reported, but the spatial control over the modes of outgoing light fields has remained elusive. Here we demonstrate such spatial control over the optical response of an atomically thin mirror formed by a subwavelength array of atoms in free space using a single controlled ancilla atom excited to a Rydberg state. The switching behavior is controlled by the admixture of a small Rydberg fraction to the atomic mirror, and consequently strong dipolar Rydberg interactions with the ancilla. Driving Rabi oscillations on the ancilla atom, we demonstrate coherent control of the transmission and reflection of the array. Our results pave the way towards realizing novel quantum coherent metasurfaces, creating controlled atom-photon entanglement and deterministic engineering of quantum states of light.Comment: 8 pages, 5 figures + 9 pages Supplementary Informatio

    Microscopic electronic structure tomography of Rydberg macrodimers

    Get PDF
    corecore