81 research outputs found
Life history strategy and intelligence:Commonality and personality profile differences
Previous work on individual and group differences in life history (LH) strategy posited a central role for intelligence. Yet, empirical results failed to support the hypothesized positive association between a slow LH strategy and intelligence. The current investigation (N = 102) represents an attempt to not only re-examine the LH/intelligence hypothesis, but also to conduct an in-depth examination on how LH strategy and intelligence are expressed in personality profiles. The California Adult Q-sort measure of slow LH strategy exhibited a significant positive correlation with performance (r = 0.32), verbal (r = 0.34), and full (r = 0.38) IQ test scores. Additional findings suggest that a slow LH strategy and intelligence both include personality characteristics reflecting ambition and, possibly, social perceptiveness. Alternatively, intelligence is more closely aligned with a personality profile including intellectual ability, independence, and creativity while LH strategy was uniquely associated with interpersonal warmth, conformity, and reticence.</p
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
Solar system Deep Time-Surveys of atmospheres, surfaces, and rings
Imaging and resolved spectroscopy reveal varying environmental conditions in
our dynamic solar system. Many key advances have focused on how these
conditions change over time. Observatory-level commitments to conduct annual
observations of solar system bodies would establish a long-term legacy
chronicling the evolution of dynamic planetary atmospheres, surfaces, and
rings. Science investigations will use these temporal datasets to address
potential biosignatures, circulation and evolution of atmospheres from the edge
of the habitable zone to the ice giants, orbital dynamics and planetary
seismology with ring systems, exchange between components in the planetary
system, and the migration and processing of volatiles on icy bodies, including
Ocean Worlds. The common factor among these diverse investigations is the need
for a very long campaign duration, and temporal sampling at an annual cadence.Comment: 10 pages, 4 figures: submitted for Astro2020 White Pape
Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment
The OLYMPUS collaboration reports on a precision measurement of the
positron-proton to electron-proton elastic cross section ratio, ,
a direct measure of the contribution of hard two-photon exchange to the elastic
cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams
were directed through a hydrogen gas target internal to the DORIS storage ring
at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and
time-of-flight scintillators detected elastically scattered leptons in
coincidence with recoiling protons over a scattering angle range of to . The relative luminosity between the two beam species
was monitored using tracking telescopes of interleaved GEM and MWPC detectors
at , as well as symmetric M{\o}ller/Bhabha calorimeters at
. A total integrated luminosity of 4.5~fb was collected. In
the extraction of , radiative effects were taken into account
using a Monte Carlo generator to simulate the convolutions of internal
bremsstrahlung with experiment-specific conditions such as detector acceptance
and reconstruction efficiency. The resulting values of , presented
here for a wide range of virtual photon polarization ,
are smaller than some hadronic two-photon exchange calculations predict, but
are in reasonable agreement with a subtracted dispersion model and a
phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table
Trypanosoma brucei Glycogen Synthase Kinase-3, A Target for Anti-Trypanosomal Drug Development: A Public-Private Partnership to Identify Novel Leads
Over 60 million people in sub-Saharan Africa are at risk of infection with the parasite Trypanosoma brucei which causes Human African Trypanosomiasis (HAT), also known as sleeping sickness. The disease results in systemic and neurological disability to its victims. At present, only four drugs are available for treatment of HAT. However, these drugs are expensive, limited in efficacy and are severely toxic, hence the need to develop new therapies. Previously, the short TbruGSK-3 short has been validated as a potential target for developing new drugs against HAT. Because this enzyme has also been pursued as a drug target for other diseases, several inhibitors are available for screening against the parasite enzyme. Here we present the results of screening over 16,000 inhibitors of human GSK-3β (HsGSK-3) from the Pfizer compound collection against TbruGSK-3 short. The resulting active compounds were tested for selectivity versus HsGSK-3β and a panel of human kinases, as well as their ability to inhibit proliferation of the parasite in vitro. We have identified attractive compounds that now form potential starting points for drug discovery against HAT. This is an example of how a tripartite partnership involving pharmaceutical industries, academic institutions and non-government organisations such as WHO TDR, can stimulate research for neglected diseases
Expression of Human nPTB Is Limited by Extreme Suboptimal Codon Content
Background: The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little attention has been paid to the consequences of codon content upon translation of host proteins. Methodology/Principal Findings: In comparing the splicing repressor activities of transfected human PTB and its two tissue-restricted paralogs–nPTB and ROD1–we found that the three proteins were expressed at widely varying levels. nPTB was expressed at 1–3 % the level of PTB despite similar levels of mRNA expression and 74 % amino acid identity. The low nPTB expression was due to the high proportion of codons with A or U at the third codon position, which are suboptimal in human mRNAs. Optimization of the nPTB codon content, akin to the ‘‘humanization’ ’ of foreign ORFs, allowed efficient translation in vivo and in vitro to levels comparable with PTB. We were then able to demonstrate that all three proteins act as splicing repressors. Conclusions/Significance: Our results provide a striking illustration of the importance of mRNA codon content in determining levels of protein expression, even within cells of the natural host species
The Mid-infrared Instrument for JWST and Its In-flight Performance
The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI
- …