550 research outputs found

    Strings, T-duality breaking, and nonlocality without the shortest distance

    Get PDF
    T-duality of string theory suggests nonlocality manifested as the shortest possible distance. As an alternative, we suggest a nonlocal formulation of string theory that breaks T-duality at the fundamental level and does not require the shortest possible distance. Instead, the string has an objective shape in spacetime at all length scales, but different parts of the string interact in a nonlocal Bohmian manner.Comment: 7 pages, revised, to appear in Eur. Phys. J.

    EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory

    Get PDF
    We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlocality of the theory there is (for systems of more than one particle) no obvious way to achieve such an extension. We present a model invariant under a certain limit of Lorentz transformations, a limit retaining the characteristic feature of relativity, the non-existence of absolute time resp. simultaneity. The analysis of this model exemplifies an important property of any Bohmian quantum theory: the quantum equilibrium distribution ρ=ψ2\rho = |\psi |^2 cannot simultaneously be realized in all Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure

    Nonclassical correlations of photon number and field components in the vacuum state

    Get PDF
    It is shown that the quantum jumps in the photon number n from zero to one or more photons induced by backaction evasion quantum nondemolition measurements of a quadrature component x of the vacuum light field state are strongly correlated with the quadrature component measurement results. This correlation corresponds to the operator expectation value which is equal to one fourth for the vacuum even though the photon number eigenvalue is zero. Quantum nondemolition measurements of a quadrature component can thus provide experimental evidence of the nonclassical operator ordering dependence of the correlations between photon number and field components in the vacuum state.Comment: 13 pages, 3 figures, corrections of omissions in equations (6) and (25). To be published in Phys. Rev.

    Comments on "There is no axiomatic system for the quantum theory"

    Full text link
    In a recent paper, Nagata [1] claims to derive inconsistencies from quantum mechanics. In this paper, we show that the inconsistencies do not come from quantum mechanics, but from extra assumptions about the reality of observables

    Nonclassical correlations of phase noise and photon number in quantum nondemolition measurements

    Get PDF
    The continuous transition from a low resolution quantum nondemolition measurement of light field intensity to a precise measurement of photon number is described using a generalized measurement postulate. In the intermediate regime, quantization appears as a weak modulation of measurement probability. In this regime, the measurement result is strongly correlated with the amount of phase decoherence introduced by the measurement interaction. In particular, the accidental observation of half integer photon numbers preserves phase coherence in the light field, while the accidental observation of quantized values increases decoherence. The quantum mechanical nature of this correlation is discussed and the implications for the general interpretation of quantization are considered.Comment: 16 pages, 5 figures, final version to be published in Phys. Rev. A, Clarifications of the nature of the measurement result and the noise added in section I

    Analytic Solutions of The Wheeler-DeWitt Equation in Spherically Symmetric Space-time

    Full text link
    We study the quantum theory of the Einstein-Maxwell action with a cosmological term in the spherically symmetric space-time, and explored quantum black hole solutions in Reissner-Nordstrom-de Sitter geometry. We succeeded to obtain analytic solutions to satisfy both the energy and momentum constraints.Comment: LaTeX file, 15 page

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy
    corecore