292 research outputs found

    Systemic long-term metabolic effects of acute non-severe paediatric burn injury

    Get PDF
    A growing body of evidence supports the concept of a systemic response to non-severe thermal trauma. This provokes an immunosuppressed state that predisposes paediatric patients to poor recovery and increased risk of secondary morbidity. In this study, to understand the long-term systemic effects of non-severe burns in children, targeted mass spectrometry assays for biogenic amines and tryptophan metabolites were performed on plasma collected from child burn patients at least three years post injury and compared to age and sex matched non-burn (healthy) controls. A panel of 12 metabolites, including urea cycle intermediates, aromatic amino acids and quinolinic acid were present in significantly higher concentrations in children with previous burn injury. Correlation analysis of metabolite levels to previously measured cytokine levels indicated the presence of multiple cytokine-metabolite associations in the burn injury participants that were absent from the healthy controls. These data suggest that there is a sustained immunometabolic imprint of non-severe burn trauma, potentially linked to long-term immune changes that may contribute to the poor long-term health outcomes observed in children after burn injury

    Deconfining Phase Transition as a Matrix Model of Renormalized Polyakov Loops

    Full text link
    We discuss how to extract renormalized from bare Polyakov loops in SU(N) lattice gauge theories at nonzero temperature in four spacetime dimensions. Single loops in an irreducible representation are multiplicatively renormalized without mixing, through a renormalization constant which depends upon both representation and temperature. The values of renormalized loops in the four lowest representations of SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the sextet and octet loops are approximately the square of the triplet loop. This agrees with a large NN expansion, where factorization implies that the expectation values of loops in adjoint and higher representations are just powers of fundamental and anti-fundamental loops. For three colors, numerically the corrections to the large NN relations are greatest for the sextet loop, 25\leq 25%; these represent corrections of 1/N\sim 1/N for N=3. The values of the renormalized triplet loop can be described by an SU(3) matrix model, with an effective action dominated by the triplet loop. In several ways, the deconfining phase transition for N=3 appears to be like that in the N=N=\infty matrix model of Gross and Witten.Comment: 24 pages, 7 figures; v2, 27 pages, 12 figures, extended discussion for clarity, results unchange

    Layered control architectures in robots and vertebrates

    Get PDF
    We revieiv recent research in robotics, neuroscience, evolutionary neurobiology, and ethology with the aim of highlighting some points of agreement and convergence. Specifically, we com pare Brooks' (1986) subsumption architecture for robot control with research in neuroscience demonstrating layered control systems in vertebrate brains, and with research in ethology that emphasizes the decomposition of control into multiple, intertwined behavior systems. From this perspective we then describe interesting parallels between the subsumption architecture and the natural layered behavior system that determines defense reactions in the rat. We then consider the action selection problem for robots and vertebrates and argue that, in addition to subsumption- like conflict resolution mechanisms, the vertebrate nervous system employs specialized selection mechanisms located in a group of central brain structures termed the basal ganglia. We suggest that similar specialized switching mechanisms might be employed in layered robot control archi tectures to provide effective and flexible action selection

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Long COVID and cardiovascular disease: a prospective cohort study

    Get PDF
    Background Pre-existing cardiovascular disease (CVD) or cardiovascular risk factors have been associated with an increased risk of complications following hospitalisation with COVID-19, but their impact on the rate of recovery following discharge is not known. Objectives To determine whether the rate of patient-perceived recovery following hospitalisation with COVID-19 was affected by the presence of CVD or cardiovascular risk factors. Methods In a multicentre prospective cohort study, patients were recruited following discharge from the hospital with COVID-19 undertaking two comprehensive assessments at 5 months and 12 months. Patients were stratified by the presence of either CVD or cardiovascular risk factors prior to hospitalisation with COVID-19 and compared with controls with neither. Full recovery was determined by the response to a patient-perceived evaluation of full recovery from COVID-19 in the context of physical, physiological and cognitive determinants of health. Results From a total population of 2545 patients (38.8% women), 472 (18.5%) and 1355 (53.2%) had CVD or cardiovascular risk factors, respectively. Compared with controls (n=718), patients with CVD and cardiovascular risk factors were older and more likely to have had severe COVID-19. Full recovery was significantly lower at 12 months in patients with CVD (adjusted OR (aOR) 0.62, 95% CI 0.43 to 0.89) and cardiovascular risk factors (aOR 0.66, 95% CI 0.50 to 0.86). Conclusion Patients with CVD or cardiovascular risk factors had a delayed recovery at 12 months following hospitalisation with COVID-19. Targeted interventions to reduce the impact of COVID-19 in patients with cardiovascular disease remain an unmet need
    corecore