21 research outputs found

    Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    Get PDF
    Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes are highly sensitive to stimulation parameters, leading to difficulty maximizing the technique's effectiveness. Although reversing the polarity of stimulation often causes opposite effects, this is not always the case. Effective clinical application will require an understanding of how tDCS works; how it modulates a neuron; how it affects the local network; and how it alters inter-network signaling. We have summarized what is known regarding the mechanisms of tDCS from sub-cellular processing to circuit level communication with a particular focus on what can be learned from the polarity specificity of the effects

    Hydrodynamics, particle relabelling and relativity

    Full text link
    Using the wave equation as an example, it is shown how to extend the hydrodynamic Lagrangian-picture method of constructing field evolution using a continuum of trajectories to second-order theories. The wave equation is represented through Eulerian-picture models that are distinguished by their Lorentz transformation properties. Introducing the idea of the relativity of the particle label, it is demonstrated how the corresponding trajectory models are compatible with the relativity principle. It is also shown how the Eulerian variational formulation may be obtained by canonical transformation from the Lagrangian picture, and how symmetries in the Lagrangian picture may be used to generate Eulerian conserved charges.Comment: 21 page

    Superposition violations in the compensatory eye movement system

    Get PDF
    PURPOSE. Compensatory eye movements (CEM) maintain a stable image on the retina by minimizing retinal slip. The optokinetic reflex (OKR) and vestibulo-ocular reflex (VOR) compensate for low and high velocity stimuli, respectively. The OKR system is known to be highly nonlinear. The VOR is generally modeled as a linear system and assumed to satisfy the superposition and homogeneity principles. To probe CEM violation of the superposition principle, we recorded eye movement responses in C57BL/6 mice to sum of sine (SoS) stimulation, a combination of multiple nonharmonic inputs. METHODS. We tested the VOR, OKR, WOR (visually enhanced VOR), and SVOR (suppressed VOR). We used stimuli containing 0.6 Hz, 0.8 Hz, 1.0 Hz, and 1.9 Hz. Power spectra of SoS stimuli did not yield distortion products. Gains and delays of SoS and single sine (SS) responses were compared to yield relative gains and delays. RESULTS. We find the superposition principle is violated primarily in the OKR, VOR, and SVOR conditions. In OKR, we observed relative gain suppression of the lower SoS stimulus frequency component irrespective of the absolute frequency. Conversely, SVOR and VOR results showed gain enhancement of the lower frequency component and overall decrease in lead. Visually enhanced VOR results showed trends for overall gain suppression and delay decrease. CONCLUSIONS. Compensatory eye movements arguably depend on predictive signals. These results may reflect better prediction for SS stimuli. Natural CEM system stimulation generally involves complex frequency spectra. Use of SoS stimuli is a step toward unravelling the signals that really drive CEM and the predictive algorithms they depend on

    Cerebellar tDCS does not affect performance in the N-back task

    Get PDF
    The N-back task is widely used in cognitive research. Furthermore, the cerebellums role in cognitive processes is becoming more widely recognized. Studies using transcranial direct current stimulation (tDCS) have demonstrated effects of cerebellar stimulation on several cognitive tasks. Therefore, the aim of this study was to investigate the effects of cerebellar tDCS on cognitive performance by using the N-back task. The cerebellum of 12 participants was stimulated during the task. Moreover, the cognitive load was manipulated in N = 2, N = 3, and N = 4. Every participant received three tDCS conditions (anodal, cathodal, and sham) divided over three separated days. It was expected that anodal stimulation would improve performance on the task. Each participant performed 6 repetitions of every load in which correct responses, false alarms, and reaction times were recorded. We found significant differences between the three levels of load in the rate of correct responses and false alarms, indicating that subjects followed the expected pattern of performance for the N-back task. However, no significant differences between the three tDCS conditions were found. Therefore, it was concluded that in this study cognitive performance on the N-back task was not readily influenced by cerebellar tDCS, and any true effects are likely to be small. We discuss several limitations in task design and suggest future experiments to address such issues

    Cerebellar tDCS does not improve performance in probabilistic classification learning

    Get PDF
    In this study, the role of the cerebellum in a cognitive learning task using transcranial direct current stimulation (tDCS) was investigated. Using a weather prediction task, subjects had to learn the probabilistic associations between a stimulus (a combination of cards) and an outcome (sun or rain). This task is a variant of a probabilistic classification learning task, for which it has been reported that prefrontal tDCS enhances performance. Using a between-subject design, all 30 subjects learned to improve their performance with increasing accuracies and shortened response times over a series of 500 trials. Subjects also became more confident in their prediction during the experiment. However, no differences in performance and learning were observed between subjects receiving sham stimulation (n = 10) or anodal stimulation (2 mA for 20 min) over either the right cerebellum (n = 10) or the left prefrontal cortex (n = 10). This suggests that stimulating the brain with cerebellar tDCS does not readily influence probabilistic classification performances, probably due to the rather complex nature of this cognitive task

    A Neuroanatomically Grounded Optimal Control Model of the Compensatory Eye Movement System in Mice

    Get PDF
    We present a working model of the compensatory eye movement system in mice. We challenge the model with a data set of eye movements in mice (n =34) recorded in 4 different sinusoidal stimulus conditions with 36 different combinations of frequency (0.1–3.2 Hz) and amplitude (0.5–8°) in each condition. The conditions included vestibular stimulation in the dark (vestibular-ocular reflex, VOR), optokinetic stimulation (optokinetic reflex, OKR), and two combined visual/vestibular conditions (the visual-vestibular ocular reflex, vVOR, and visual suppression of the VOR, sVOR). The model successfully reproduced the eye movements in all conditions, except for minor failures to predict phase when gain was very low. Most importantly, it could explain the interaction of VOR and OKR when the two reflexes are activated simultaneously during vVOR stimulation. In addition to our own data, we also reproduced the behavior of the compensatory eye movement system found in the existing literature. These include its response to sum-of-sines stimuli, its response after lesions of the nucleus prepositus hypoglossi or the flocculus, characteristics of VOR adaptation, and characteristics of drift in the dark. Our model is based on ideas of state prediction and forward modeling that have been widely used in the study of motor control. However, it represents one of the first quantitative efforts to simulate the full range of behaviors of a specific system. The model has two separate processing loops, one for vestibular stimulation and one for visual stimulation. Importantly, state prediction in the visual processing loop depends on a forward model of residual ret

    Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study

    Get PDF
    The role of the cerebellum in cognitive processing is increasingly recognized but still poorly understood. A recent study in this field applied cerebellar Transcranial Direct Current Stimulation (c-tDCS) to the right cerebellum to investigate the role of prefrontal-cerebellar loops in language aspects of cognition. Results showed that the improvement in participants' verbal response times on a verb generation task was facilitated immediately after cathodal c-tDCS, compared to anodal or sham c-tDCS. The primary aim of the present study is to replicate these findings and additionally to investigate possible longer term effects. A crossover within-subject design was used, comparing cathodal and sham c-tDCS. The experiment consisted of two visits with an interval of one week. Our results show no direct contribution of cathodal c-tDCS over the cerebellum to language task performance. However, one week later, the group receiving cathodal c-tDCS in the first visit show less improvement and increased variability in their verbal response times during the second visit, compared to the group receiving sham c-tDCS in the first visit. These findings suggest a potential negative effect of c-tDCS and warrant further investigation into long term effects of c-tDCS before undertaking clinical studies with poststroke patients with aphasia

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Magnetic noise of small Stirling coolers

    No full text
    We measured the magnetic noise generated by three small Stirling coolers (cooling powers 0.5 to 1.5 W at 80 K). Such a cooler will be used for cooling a high-Tc SQUID magnetometer. The measurements were performed with a fluxgate magnetometer and a 3-axis low-Tc SQUID magnetometer, the latter in a magnetically shielded room. The measuring setup is shortly described, and results on the coolers are given and compared to a simple dipole model. Consequences for SQUID-cooling are shortly discussed
    corecore