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Introduction

Probabilistic classification learning (PCL) tasks make use 
of cues that are variously predictive of class membership. 
For example, people can learn that certain cues are more 
often associated with category A than category B, despite 
the fact that no exclusive relationship exists between cue 
and category. Several neuroimaging studies have suggested 
involvement of the left prefrontal cortex in PCL tasks 
(Aron et al. 2004; Flanery 2005). Recently, an fMRI study 
showed that PCL tasks also induce activation in the right 
cerebellum as well as in the left orbitofrontal cortex, which 
increased as a function of the predictive value of stimuli 
(Lam et al. 2013).

The cerebellum is increasingly thought to be involved 
in both motor and non-motor functions (Stoodley and 
Schmahmann 2009; Timmann et al. 2010). Reciprocal cer-
ebro-cerebellar connections connect the cerebellar hemi-
spheres to various parts in the contralateral hemispheres of 
the cortex (Ramnani 2006; Strick et al. 2009). The general 
idea is that the anterior cerebellum, via the connections to 
the motor cortex, supports the cortex in learning new and 
modifying existing motor behavior (Ito 2000). The connec-
tions between the posterior cerebellum and prefrontal cor-
tex suggest that the cerebellum also plays a supportive role 
in learning cognitive behavior (Balsters and Ramnani 2011; 
Hayter et al. 2007). For both motor and cognitive learning 
tasks, it has been observed that stimulating the cerebellum 
noninvasively using transcranial direct current stimulation 
(tDCS) affects task performance and task learning (Fer-
rucci and Priori 2014; Jacobson et al. 2012).

Here we studied the role of the cerebellum in cognitive 
learning, by assessing the effects of tDCS on performance 
in the weather prediction task. In this task, which is about 
learning probabilistic associations between cues and two 
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weather categories, tDCS stimulation of the left prefrontal 
cortex (Fp3) allegedly improved task performance (Kincses 
et al. 2004; Nitsche et al. 2007). We hypothesized that tDCS 
over the cerebellum also induces changes in performance 
in this PCL task. We predicted that stimulation of either 
the left prefrontal cortex or the right cerebellum would 
both result in improved learning in the weather prediction 
task, as indicated by a reduction in errors and a decrease in 
response times over the course of the experiment.

Materials and methods

Participants

Thirty participants gave their informed consent to partici-
pate in this study, which is approved by the local ethical 
board. Thirteen of the participants were females, and 17 
were males. Ages ranged between 19 and 32 years [mean 
(M) = 26.5 years, standard deviation (SD) = 3.4 years]. 
All participants fulfilled the following criteria: right hand-
edness, normal or corrected-to-normal vision, no metallic 
implants in or near the head, no electronic implants, no his-
tory of neurological deficits and no history of chronic drug 
abuse. They were recruited through internet advertising; as 
a motivation, the best performing participant received 30 
euros.

Subjects were randomly assigned to one of the three 
groups of 10 participants each: the anodal cerebellar group 
(5 women, 5 men), the anodal prefrontal group (3 women, 
7 men) and the sham group (5 women, 5 men). All proce-
dures performed were in accordance with the ethical stand-
ards of the institutional research committee and with the 
1964 Helsinki Declaration and its later amendments.

Task and stimuli

Subjects performed a variation of the weather prediction 
task (Gluck et al. 2002) developed in Processing (version 
2.0, available at http://www.processing.org). The experi-
ment was performed on a laptop with a 15-in screen with 
full HD resolution (1920 × 1080 pixels) with cabled com-
puter mouse.

In the experiment, participants were presented with 
500 trials. In each trial, a visual stimulus was shown. For 
each stimulus, the participant had to indicate whether they 
thought the stimulus predicted sun or rain, based on their 
experiences in previous trials. They gave their response by 
clicking with the mouse on the corresponding symbol pre-
sented beneath the stimulus. After the response, the correct 
answer was presented.

The stimulus consisted of the combination of one, two 
or three distinct cards. In total, there were four distinct 

cards containing four distinct geometric forms: a circle, a 
triangle, a square and a diamond. Each card had a height of 
200 pixels and a width of 200 pixels. The presence of each 
individual card was associated with one of both outcomes 
(sun or rain) with a fixed probability (Gluck et al. 2002). 
The circle card was associated with rain in 75.6 % of the 
trials in which a circle was part of the stimulus, for the dia-
mond card this was 57.5 %, for square this was 42.5 %, 
and for triangle this was 24.4 %. Over all trials, each of the 
four individual cards was used roughly the same number 
of times. This implied a specific probability for a stimulus, 
i.e., a combination of cards, to be associated with an out-
come. The frequency of the stimuli and the probabilities of 
association with rain are shown in Table 1.

Transcranial direct current stimulation (tDCS)

tDCS was delivered by a DC stimulator (NeuroConn 
GmbH, Ilmenau, Germany). The two 5 × 7 cm2 electrodes 
were placed in synthetic sponges, which were soaked in a 
saline solution. Two electrode montages were used. In all 
participants of the prefrontal group, the anodal electrode 
was placed over the left prefrontal cortex (Fp3) and the 
reference (cathodal) electrode was placed over the right 
supraorbital region (on the forehead). In all participants of 
the cerebellar group, the anodal electrode was placed on the 
right cerebellar hemisphere (3 cm lateral to the inion) and 
the reference electrode was placed on the right buccinator 
muscle. In the sham group, each montage was used in half 
of the participants. In the prefrontal and cerebellar groups, 
current was applied for 20 min with an intensity of 2.0 mA 
(Ferrucci et al. 2008). In the sham group, current was only 
applied for 30 s to give participants the same tingling sen-
sation as in the other groups. None of the subjects could 
distinguish the stimulation conditions. In all three groups, a 
gradual ramp-up (fade in) and ramp-down (fade out) of the 
current in 30 s reduced unpleasant side effects. Stimulation 
was started at the beginning of the experiment.

Questionnaire

After the test, participants had to rate the contribution of 
each of the four cards to the prediction of sun and rain on 
a scale from 1 (indicating a high contribution to sun) to 10 
(indicating a high contribution to rain). They also had to 
rate their confidence in this rating on a scale from 1 (not 
sure at all) to 10 (very sure).

Design and procedure

Participants were first informed on the safety of the tDCS 
procedure and the general procedure of the session. 
After giving consent, the tDCS montage was created and 

http://www.processing.org
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stimulation was applied. Five minutes after the beginning 
of tDCS stimulation, the experiment started. First, partici-
pants received the following literal on-screen instructions:

Predict the weather: Rain or Sun? In this game you 
will learn to predict the weather by using the cards 
below: [pictures of the four cards were shown here]. 
In each round you will see a combination of these 
cards. You then decide if this combination predicts 
‘rain’ or ‘sun’. First, your score is shown on the 
screen (maximum: 100, minimum: 0). Then you 
will see the cards and you will give your prediction 
by clicking on the ‘rain’ or ‘sun’ button. After click-
ing, the correct answer will turn green. Occasionally 
a pause screen will be shown so you can take a short 
break. Two more things: 1. The order of the cards 
does not matter, it’s only the presence of a card that 
matters. For example: ‘Circle Square Diamond’ is the 
same as ‘Square Circle Diamond’. 2. The best partici-
pant will receive 30 euro! [sic].

After the experimenter (NSM) made sure the instruc-
tions were understood, he left the room and the participant 
performed the task.

Before each trial, instead of a fixation cross a weighted 
score was presented for .5 s. This score was a weighted 
average of the participant’s performance on the last 10 
trials and had a minimum value of 0 and a maximum 
value of 100. For each trial, this score was calculated 
with the following formula: Score = 100·∑ (k = 1:10) 
[(11 − k)·Ck]/55, where k runs from 1 to 10, indicat-
ing the 10 previous trials. If a correct answer was given k 
trials before the current trial, Ck had a value of 1 (and a 
value of 0 if it was answered incorrectly). This score was 
used to keep the participant motivated. After an additional 
blank screen (presented for .3 s), a stimulus was presented 
together with a “sun” and “rain” symbol. The participant 
had a maximum time of 8 s to click on one of the symbols. 
Feedback was given for 1 s by removing the incorrect sym-
bol and turning the correct symbol green. Finally, the new 

Table 1  Probability structure of 
the weather predication task

Each of the 14 stimulus types (A–N) is a unique combination of 1 to 3 distinct cards from a set of four 
cards (circle, diamond, square or triangle). For each trial, the order of the cards within the combination was 
randomized. The column “n/100” denotes how many times a stimulus type occurred during a block of 100 
trials. The columns labeled “rain” and “sun” denote how often the stimulus is combined with the outcome 
rain or sun, respectively. The column labeled “P (rain)” is the probability that the weather outcome was 
“rain” for a given stimulus type. The probability that the weather outcome was “sun” is 1 minus P (rain). 
For example, stimulus type G consisted of a diamond, a square and a triangle card and was shown 4 times 
in a block of 100 trials; it was associated with an outcome “rain” only once, so the optimal response for the 
participant would be to say that this stimulus predicted “sun”

Type Stimulus n/100 Rain Sun P (rain) Optimal response

A 14 2 12 .143 Sun

B 8 3 5 .375 Sun

C 9 1 8 .111 Sun

D 8 5 3 .625 Rain

E 6 1 5 .167 Sun

F 6 3 3 .500 None

G 4 1 3 .250 Sun

H 14 12 2 .857 Rain

I 6 3 3 .500 None

J 6 5 1 .833 Rain

K 3 1 2 .333 Sun

L 9 8 1 .889 Rain

M 3 2 1 .667 Rain

N 4 3 1 .750 Rain

Total 100 50 50



424 Exp Brain Res (2017) 235:421–428

1 3

weighted score was presented, indicating the beginning of 
the next trial (Fig. 1).

Subjects were presented with 10 blocks of 50 trials each. 
Pairs of two blocks contained all 100 trials as depicted in 
Table 1. Stimuli were divided as equally as possible over 
these two blocks, and we ensured that each block of 50 tri-
als contained 25 stimuli that predicted rain. The order of 
stimuli was pseudo-randomized. All participants were pre-
sented the exact same order of stimuli.

Data analysis

Performance accuracy was based on the number of opti-
mal responses given by a participant (Gluck et al. 2002). 
The optimal response for a particular trial is that response 
that corresponds to the outcome (sun or rain) that is most 
probable for that stimulus (Table 1). Response times were 
measured by determining the time between the appearance 
of the stimulus and the mouse click on the symbol of “sun” 
or “rain.” Trials with stimulus types F or I were discarded, 
because they do not have an optimal outcome as the corre-
sponded to rain or sun equally.

For each session, we calculated the percentage of the 
given responses that were optimal for each block of 50 
trials. We also calculated mean response time for each 
block. In addition, we calculated the percentage of opti-
mal responses and mean response times for the session as 
a whole.

To examine how participants performed on trials with 
different predictive values, separate accuracy scores were 
calculated for high-informative and low-informative trials. 
High-informative trials consisted of stimulus types A, C, E, 
H, J and L, because they had very high predictive values for 

either sun or rain (i.e., P (rain) is close to either 0 or 1, see 
Table 1). Low-informative trials consisted of stimulus types 
B, D, G, K, M and N, because they had predictive values 
close to chance (.5).

Statistical analysis

The effect of tDCS on learning was assessed by a mixed-
design ANOVA with one between-participant factor tDCS 
condition (three levels: prefrontal, cerebellar and sham) 
and one within-participant factor Block (10 levels: 10 
blocks of 50 trials each). In case of sphericity violations, 
we report corrected estimations of the degrees of freedom. 
The overall effect of tDCS was assessed by a post hoc one-
way ANOVA with tDCS condition as a between-subject 
factor (three levels: prefrontal, cerebellar and sham stimu-
lation). T-tests were used to compare the performance in 
high-informative and low-informative trials. Analyses were 
performed for accuracy scores and for response times sepa-
rately. Additional analyses were performed comparing the 
first and last block.

To examine a relationship between speed and accuracy 
of responses, Pearson correlations between overall accu-
racy scores and overall mean response times were calcu-
lated for each tDCS stimulation condition separately, and 
for all participants combined.

Interaction effects of tDCS and questionnaire ratings 
were also assessed by a mixed-design ANOVA with one 
between-participant factor tDCS condition (three levels) 
and one within-participant factor cards with four levels 
(one level per card). All reported values are means ± stand-
ard deviations. The threshold of significance was set at 5 
percent (α = .05).

Fig. 1  Trial example. After the presentation of the weighted score 
(weighted average over the last ten trials) followed by a blank screen, 
a stimulus was presented (a given combination of the four cards, in 
this example, type N). After clicking with the mouse on one of the 
weather symbols, the correct answer was presented. In this example, 

the participant indicated that he believed that this stimulus corre-
sponds to “sun.” In this particular trial, this was not the case, although 
“sun” was indeed the optimal response for this stimulus, being the 
correct response in 3 out of 4 presentations (see Table 1)
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Results

Overall accuracy

On average, participants gave more optimal response across 
all 500 trials than would be expected by chance (72 ± 9 %, 
range 55–89 %, t (29) = 13.0, p < .001, d = 4.82). The 
main effect of tDCS condition on accuracy was not sig-
nificant (F (2, 27) = 2.30, p = .12). The post hoc one-
way ANOVA showed no significant differences in overall 
accuracy scores between right cerebellar (67 ± 7 %), left 
prefrontal (75 ± 11 %) and sham stimulation (73 ± 8 %). 
Subjects preferred to report “sun” slightly more often 
than “rain” (52 vs 48 %, respectively; sign test Z = 2.23, 
p = .03). The overall accuracy was higher in high-inform-
ative trials (79 ± 11 %) than in low-informative trials 
(57 ± 9 %, t (29) = 12.68, p < .001, d = 2.34).

Subjects performed better over time. Analysis showed 
a significant effect of blocks (F (4.55, 122.80) = 5.95, 
p < .001, ηp

2 = .18, Greenhouse–Geisser corrected, ε = .51). 
This was supported by the fact that, taken together, par-
ticipants had higher scores in the last block (75 ± 15 %) 
than in the first block (64 ± 14 %, t (29) = 3.59, p < .005, 
d = .66).

The main effect of tDCS condition was not significant 
(F (2, 27) = 2.30, p = .12). Moreover, the interaction 
between blocks and tDCS condition was also not signifi-
cant (F (9.10, 122.80) = 5.95, p = .85), indicating that 
learning was not influenced by tDCS stimulation (Fig. 2).

Response times

Mean response times were obtained for each participant 
over the entire experiment (500 trials). Individual scores 
varied between .84 and 3.23 s (1.78 ± .50 s). Therefore, the 
total experiment time varied between 22 min and 42 min 
which is well within the time limits of 60 min for tDCS 
stimulation is thought to show an effect (Nitsche and Pau-
lus 2001; Monte-Silva et al. 2013). The main effect of 
tDCS condition on response time was not significant (F 
(2, 27) = .78, p = .47). The post hoc one-way ANOVA on 
overall mean response times showed no significant differ-
ences between right cerebellar (1.76 ± .54 s), left prefrontal 
(1.64 ± .58 s) and sham tDCS stimulation (1.93 ± .37 s). 
Response times for “sun” were the same as for “rain” (1.74 
vs 1.79 s, respectively; sign test Z = 1.28, p = .20). The 
overall mean response time was lower in high-inform-
ative trials (1.67 ± .48 s) than in low-informative trials 
(1.89 ± .53 s, t (29) = 7.13, p < .001, d = 1.36).

Subjects responded faster over time. The ANOVA 
showed a significant effect of blocks (F (4.72, 
127.40) = 33.30, p < .001, ηp

2 = .55, Greenhouse–Geisser 

corrected, ε = .52). This was supported by the fact that 
participants had lower response times in the last block 
(1.44 ± .45 s) than in the first block (2.41 ± .63 s, t 
(29) = 9.58, p < .001, d = 1.83). The main effect of tDCS 
condition was not significant (F (2, 27) = .78, p = .47). 
Moreover, the interaction between blocks and tDCS condi-
tions was not significant (F (9.44, 127.40) = 1.78, p = .31), 
indicating that also the decrease in response times across 
the experiment was not influenced by stimulation (Fig. 3).

We performed an additional analysis including only the 
first and the last blocks in our ANOVA. This also showed 
a main effect of block for accuracy (F(1, 27) = 12.00, 
p < .01, ηp

2 = .31) and reaction time (F (1, 27) = 90.35, 
p < .001, ηp

2 = .77). Main effects of stimulation or inter-
actions between stimulation and block were not significant 
(all p > .32).

No significant correlations between accuracy and 
response times were found in either of the tDCS condi-
tions (sham: r = −.59, p = .07; right cerebellar: r = .27, 
p = .45; left prefrontal: r = −.21, p = .56). The correla-
tion was also not seen when all 30 subjects were pooled 
(r = −.14, p = .46).

Questionnaire

Ratings of the contribution of each of the four cards to 
the prediction (Fig. 4) were different for each card (F 
(2.68, 72.48) = 92.07, p < .001, ηp

2 = .77, Huyn–Feldt 
corrected, ε = .76). The main effect of stimulation 
condition and the interaction between card type and 

Fig. 2  Accuracy. The plot shows the average accuracy scores per 
block of 50 trials for each of the three stimulation conditions (right 
cerebellar, left prefrontal or sham). The positive slope indicates that 
participants performed better over time. No interaction was found 
between stimulation condition and blocks. Error bars represent the 
standard error of the means
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stimulation condition were not significant (both p > .3). 
Confidence ratings were also different per card type (F 
(2.93, 79.13) = 16.89, p < .001, ηp

2 = .39, Huyn–Feldt 
corrected, ε = .83), but again the main effect of stimu-
lation condition and the interaction were not significant 
(both p > .1).

Discussion

In this study, we investigated the role of the cerebellum in 
cognition by assessing the effects of cerebellar direct cur-
rent stimulation (tDCS) on the weather prediction task, 
a type of probabilistic categorization learning (PCL). As 
expected, over the course of the experiment participants 
learned to improve their performance, showing increased 
accuracies and reduced response times while the experi-
ment progressed. We only used anodal stimulation over 
the target brain areas as excitatory effects of anodal stim-
ulation were more profound than the inhibitory effects 
of cathodal stimulation in a classification task (Jacobson 
et al. 2012). However, we observed that anodal right cer-
ebellar tDCS stimulation had no effects on either accu-
racy or response time. Post hoc, we performed additional 
analyses to investigate the effect of tDCS on the first 50 
trials separated in block of 10 trials, similar to previous 
studies (Kincses et al. 2004; Nitsche et al. 2007). In line 
with those studies, we did not find a significant interac-
tion between stimulation and blocks. In our view, the 
lack of such an interaction effect suggests that tDCS had 
no effect on probabilistic categorization learning. The 
finding that individual blocks show differences between 
tDCS conditions in these previous studies does not pro-
vide compelling evidence that tDCS affects learning. 
Moreover, these differences for individual blocks were 
not replicated here.

Subjects had a preference for the outcome “sun,” which 
is in line with a previous study (Lam et al. 2013). Contri-
bution ratings followed similar patterns to the card prob-
abilities, indicating participants had gained knowledge 
of the predictive values of the cards. This is supported by 
the higher confidence in the high-predictive stimulus types 
than in the low-predictive stimulus types. These two sub-
jective measures of performance were also not influenced 
by tDCS stimulation.

The most likely explanation for our results is that the 
effects of tDCS are too small to have an effect on the per-
formance in the weather prediction task. Moreover, observ-
ing such an effect would be hampered by the high variabil-
ity in performance measures between participants. One way 
to reduce variability might be accomplished by some kind 
of normalization, which, on the other hand, also could dis-
tort the data. When we normalized our data by subtracting 
the data of the first block from the subsequent blocks, and 
performed our analyses again, we observed highly similar 
outcomes, suggesting again that tDCS is unlikely to have 
an effect on probabilistic categorization learning.

At first sight, our findings seem to be in contrast with 
previous studies that did find an effect of anodal prefron-
tal tDCS (Fp3) using this type of task (Kincses et al. 2004; 

Fig. 3  Response times. The plot shows the average response times 
per block of 50 trials for each of the three stimulation conditions 
(right cerebellar, left prefrontal or sham). The negative slope indicates 
that participants performed faster over time. No interaction was found 
between stimulation condition and blocks. Error bars represent the 
standard error of the means

Fig. 4  Subjective card contribution and confidence ratings. For each 
of the cards, participants were asked to rate their subjective contri-
bution to the prediction of rain and the confidence they had in that 
subjective rating. Contribution ratings follow the same pattern as 
the actual card probabilities (contributions to rain: circle 75.6 %, 
diamond 57.5 %, square 42.5 %, triangle 24.4 %), indicating that 
participants had gained knowledge about actual card contributions. 
Confidence ratings were higher for circle and triangle, probably due 
to the high predictive values of these cards. Error bars represent the 
standard error of the means
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Nitsche et al. 2007). However, these studies used a total of 
50 trials, and effects were only obtained using crude sta-
tistical analysis: Both studies did not show, or even test 
for, interaction effects between blocks and tDCS, but did 
perform post hoc tests to check for differences per tDCS 
condition for each block without corrections for multiple 
testing. Therefore, we think that these previous results do 
not provide clear evidence for tDCS effects on probabilistic 
categorization learning yet.

The variability between participants could be due to the 
fact that the task relies on multiple processes, e.g., working 
memory, strategy forming and strategy switching, assigning 
cue combinations to certain outcomes, and visual recogni-
tion. A task which relies on less cognitive processes could 
result in lower variance and would be better for revealing 
stimulation effects on implicit learning. An example of 
such a task is the probabilistic guessing task (Hecht et al. 
2010). Furthermore, this type of task is more suitable for 
a within-participant design for stimulation conditions. Here 
we choose to adopt a between-participant design because 
we wanted to avoid a test–retest effect due to the possibility 
that participants would become too familiar dealing with 
probabilistic rules in our task.

Another explanation for the lack of effect could be 
that the cerebellum and prefrontal cortex are not critically 
involved in probabilistic classification. However, the afore-
mentioned neuroimaging studies reported activation of the 
left prefrontal cortex during probabilistic classification 
(Kincses et al. 2004; Nitsche et al. 2007). Moreover, it is 
well established that the left prefrontal cortex is important 
in many cognitive learning processes. There is therefore a 
likely role of the left prefrontal cortex in probabilistic clas-
sification. Yet, the role of the cerebellum can be debated. 
Imaging studies suggest that the prefrontal cortex and the 
striatum are primarily involved with (correct) categori-
zation in a weather prediction task (Seger 2008). This is 
confirmed by a study investigating PCL in patients with 
Parkinson’s disease and patients with cerebellar deficits. 
Results showed that Parkinson but not cerebellar patients 
are impaired on the weather prediction task, suggesting 
that successful PCL relies on intact basal ganglia but not 
on intact cerebellar structures (Witt et al. 2002). Cerebellar 
activation increases in the right hemisphere with increas-
ing predictive values of card combinations (Lam et al. 
2013). Based on these observations, we analyzed the learn-
ing curves of the card combinations with a high predictive 
value alone, in order to increase the change in finding an 
influence of cerebellar tDCS. We, however, did not find 
such an effect.

Several adjustments to our experimental design can be 
suggested as various confounding factors like the exact 
electrode location, and stimulation intensities and stimulus 
durations could influence the effect of tDCS (Gluck et al. 

2002). The tDCS settings used in our study were found to 
modulate behavior, albeit in different tasks (Nitsche et al. 
2007; Tomlinson et al. 2013). Nonetheless, in order to be 
able to claim that cerebellar tDCS does not influence prob-
abilistic classification performances at all, future studies 
could look into the effect of these possible confounding fac-
tors, ideally adopting a within-subject design. On the other 
hand, negative findings with tDCS in cognitive tasks are not 
unexpected. There is increasing discussion about the robust-
ness of tDCS effects, and publication of negative findings is 
of importance (Horvath et al. 2015; Antal et al. 2015).

Conclusion

We were not able to demonstrate the role of the cerebellum 
in probabilistic classification. Although we cannot rule out 
that such an effect is present, our data suggest that a tDCS 
effect on this task is likely to be quite small. Studies uti-
lizing a different task or stimulation technique are needed 
to investigate cerebellar involvement in complex cognitive 
learning processes.
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