67 research outputs found

    Sequence and Expression of Amphioxus Alkali Myosin Light Chain (AmphiMLC-alk) Throughout Development: Implications for Vertebrate Myogenesis

    Get PDF
    AbstractThe lower chordate amphioxus, widely considered the closest living invertebrate relative of the vertebrates, is a key organism for understanding the relationship between gene duplications and evolution of the complex vertebrate body plan. In tetrapod vertebrates, the alkali myosin light chain genes (MLC-alk), which code for proteins associated with the globular head of the myosin heavy chain, constitute a large family with stage-, tissue-, and fiber-type-specific expression of different isoforms thought to have arisen by duplication of a single ancestral gene. In protostome invertebrates, e.g., arthropods, molluscs, and nematodes, only one MLC-alk gene has been found, but the number of such genes in deuterostome invertebrates and lower vertebrates is unknown. The present report, describing the sequence and expression throughout development of the amphioxus gene for alkali myosin light chain (AmphiMLC-alk), thus fills a major gap in understanding the relation between gene duplication and increasing diversity of muscle-cell types. A full-length clone (1 kb) of AmphiMLC-alk was isolated from a larval amphioxus cDNA library. It coded for a 149-amino-acid protein most closely related to the vertebrate embryonic form of MLC-alk. Southern blot analysis revealed only one copy of AmphiMLC-alk and suggested that it is the only MLC-alk gene in amphioxus. Northern blot analysis indicated that this gene produces only one transcript, which is expressed at all stages of development and in adults. In situ hybridizations showed expression initially in the myotomes of somites 2-5 of neurula embryos and soon thereafter in the myotomes of somite 1 and of newly forming somites progressively added posteriorly. Myotomal expression continues throughout larval development and into the adult stage as the myotomal cells differentiate into striated, mononucleate muscle cells—unlike vertebrate striated muscle cells, those of amphioxus never become multinucleate. In late larvae and adults myotomal expression of AmphiMLC-alk is localized along the medial edge of the myotome and at the ends of the cells. This is the first demonstration of intracellular localization of MLC transcripts in muscle cells of any animal. Expression of AmphiMLC-alk was also detected in smooth muscles as well as in striated muscles not derived from the myotome. These expression data are consistent with the Southern blot analysis in suggesting that there is only one MLC-alk gene in amphioxus. Thus, duplication of an ancestral vertebrate MLC-alk gene probably occurred after the vertebrate and amphioxus lineages split. We conclude that development of a segmented axial musculature preceded the evolution of multiple MLC-alk isoforms, which evidently arose about the time of multinucleation. Since myogenesis in amphioxus is similar to but far simpler than myogenesis in vertebrates at both the structural and gene levels, an understanding of myogenesis in amphioxus can give insights into both the evolutionary history and the detailed mechanisms of vertebrate myogenesis

    Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus

    Get PDF
    In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates

    The amphioxus genome illuminates vertebrate origins and cephalochordate biology

    Get PDF
    Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates—a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates

    Characterization and developmental expression of AmphiNk2-2 , an NK2 class homeobox gene from amphioxus (Phylum Chordata; Subphylum Cephalochordata)

    Full text link
     The genome of amphioxus includes AmphiNk2-2 , the first gene of the NK2 homeobox class to be demonstrated in any invertebrate deuterostome. AmphiNk2-2 encodes a protein with a TN domain, homeodomain, and NK2-specific domain; on the basis of amino acid identities in these conserved regions, AmphiNk2-2 is a homolog of Drosophila vnd and vertebrate Nkx2–2. During amphioxus development, expression of Amph- iNk2-2 is first detected ventrally in the endoderm of late gastrulae. In neurulae, endodermal expression divides into three domains (the pharynx, midgut, and hindgut), and neural expression commences in two longitudinal bands of cells in the anterior neural tube. These neural tube cells occupy a ventrolateral position on either side of the cerebral vesicle (the probable homolog of the vertebrate diencephalic forebrain). The dynamic expression patterns of AmphiNkx2-2 suggest successive roles, first in regionalizing the endoderm and nervous system and later during differentiation of specific cell types in the gut (possibly peptide endocrine cells) and brain (possibly including axon outgrowth and guidance).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42246/1/427-208-2-100_82080100.pd

    Sequence and developmental expression of amphioxus AmphiNk2–1 : insights into the evolutionary origin of the vertebrate thyroid gland and forebrain

    Full text link
     We characterized an amphioxus NK-2 homeobox gene ( AmphiNk2–1 ), a homologue of vertebrate Nkx2–1 , which is involved in the development of the central nervous system and thyroid gland. At the early neurula stage of amphioxus, AmphiNk2–1 expression is first detected medially in the neural plate. By the mid-neurula stage, expression is localized ventrally in the nerve cord and also begins in the endoderm. During the late neurula stage, the ventral neural expression becomes transiently segmented posteriorly and is then down-regulated except in the cerebral vesicle at the anterior end of the central nervous system. Within the cerebral vesicle AmphiNk2–1 is expressed in a broad ventral domain, probably comprising both the floor plate and basal plate regions; this pattern is comparable to Nkx2–1 expression in the mouse diencephalon. In the anterior part of the gut, expression becomes intense in the endostyle (the right wall of the pharynx), which is the presumed homologue of the vertebrate thyroid gland. More posteriorly, there is transitory expression in the midgut and hindgut. In sum, the present results help to support homologies (1) between the amphioxus endostyle and the vertebrate thyroid gland and (2) between the amphioxus cerebral vesicle and the vertebrate diencephalic forebrain.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42247/1/427-209-4-254_92090254.pd

    The amphioxus genome illuminates vertebrate origins and cephalochordate biology

    Get PDF
    Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates—a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates

    Axial patterning in cephalochordates and the evolution of the organizer

    Get PDF
    The organizer of the vertebrate gastrula is an important signalling centre that induces and patterns dorsal axial structures. Although a topic of long-standing interest, the evolutionary origin of the organizer remains unclear. Here we show that the gastrula of the cephalochordate amphioxus expresses dorsal/ventral (D/V) patterning genes (for example, bone morphogenetic proteins (BMPs), Nodal and their antagonists) in patterns reminiscent of those of their vertebrate orthlogues, and that amphioxus embryos, like those of vertebrates, are ventralized by exogenous BMP protein. In addition, Wnt-antagonists (for example, Dkks and sFRP2-like) are expressed anteriorly, whereas Wnt genes themselves are expressed posteriorly, consistent with a role for Wnt signalling in anterior/posterior (A/P) patterning. These results suggest evolutionary conservation of the mechanisms for both D/V and A/P patterning of the early gastrula. In light of recent phylogenetic analyses placing cephalochordates basally in the chordate lineage, we propose that separate signalling centres for patterning the D/V and A/P axes may be an ancestral chordate character
    • …
    corecore