22,757 research outputs found
Accommodation requirements for microgravity science and applications research on space station
Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station
Quantum phase transitions in the Fermi-Bose Hubbard model
We propose a multi-band Fermi-Bose Hubbard model with on-site fermion-boson
conversion and general filling factor in three dimensions. Such a Hamiltonian
models an atomic Fermi gas trapped in a lattice potential and subject to a
Feshbach resonance. We solve this model in the two state approximation for
paired fermions at zero temperature. The problem then maps onto a coupled
Heisenberg spin model. In the limit of large positive and negative detuning,
the quantum phase transitions in the Bose Hubbard and Paired-Fermi Hubbard
models are correctly reproduced. Near resonance, the Mott states are given by a
superposition of the paired-fermion and boson fields and the Mott-superfluid
borders go through an avoided crossing in the phase diagram.Comment: 4 pages, 3 figure
Plant cell walls: impact on nutrient bioaccessibility and digestibility
Cell walls are important structural components of plants, affecting both the bioaccessibility and subsequent digestibility of the nutrients that plant-based foods contain. These supramolecular structures are composed of complex heterogeneous networks primarily consisting of cellulose, and hemicellulosic and pectic polysaccharides. The composition and organization of these different polysaccharides vary depending on the type of plant tissue, imparting them with specific physicochemical properties. These properties dictate how the cell walls behave in the human gastrointestinal tract, and how amenable they are to digestion, thereby modulating nutrient release from the plant tissue. This short narrative review presents an overview of our current knowledge on cell walls and how they impact nutrient bioaccessibility and digestibility. Some of the most relevant methods currently used to characterize the food matrix and the cell walls are also described
Dynamic Fracture in Single Crystal Silicon
We have measured the velocity of a running crack in brittle single crystal
silicon as a function of energy flow to the crack tip. The experiments are
designed to permit direct comparison with molecular dynamics simulations;
therefore the experiments provide an indirect but sensitive test of interatomic
potentials. Performing molecular dynamics simulations of brittle crack motion
at the atomic scale we find that experiments and simulations disagree showing
that interatomic potentials are not yet well understood.Comment: 4 pages, 4 figures, 19 reference
The Nature of Superfluidity in Ultracold Fermi Gases Near Feshbach Resonances
We study the superfluid state of atomic Fermi gases using a BCS-BEC crossover
theory. Our approach emphasizes non-condensed fermion pairs which strongly
hybridize with their (Feshbach-induced) molecular boson counterparts. These
pairs lead to pseudogap effects above and non-BCS characteristics below.
We discuss how these effects influence the experimental signatures of
superfluidity.Comment: 4 pages, 3 figures, submitted to PRA Rapid Communications;
introduction rewritten, figure replace
Thermodynamics of Multi-Component Fermi Vapors
We study the thermodynamical properties of Fermi vapors confined in a
harmonic external potential. In the case of the ideal Fermi gas, we compare
exact density profiles with their semiclassical approximation in the conditions
of recent experiments. Then, we consider the phase-separation of a
multi-component Fermi vapor. In particular, we analyze the phase-separation as
a function of temperature, number of particles and scattering length. Finally,
we discuss the effect of rotation on the stability and thermodynamics of the
trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a
Special Issue Articl
Bose-Einstein Condensates in Rotating Lattices
Strongly interacting bosons in 2D in a rotating square lattice are
investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds
to a rotating lattice potential imprinted on a trapped Bose-Einstein
condensate. Second-order quantum phase transitions between states of different
symmetries are observed at discrete rotation rates. For the square lattice we
study, there are four possible ground-state symmetries.Comment: 4 pages, 5 figures, Accepted for publication in PRL v2: Replaced
phase winding labels with symmetry eigenstate indices, replaced Gaussian
Ansatz with more general treatment and other minor change
- …