22 research outputs found

    Optical Scattering Measurements of Laser Induced Damage in the Intraocular Lens

    Get PDF
    This study optically determines whether the amount of light scatter due to laser-induced damage to the intraocular lens (IOL) is significant in relation to normal straylight values in the human eye. Two IOLs with laser-induced damage were extracted from two donor eyes. Each IOL had 15 pits and/or cracks. The surface area of each pit was measured using a microscope. For 6 pits per intraocular lens the point spread function (PSF) in terms of straylight was measured and the total straylight for all 15 pits was estimated. The damage in the IOLs was scored as mild/moderate. The total damaged surface areas, for a 3.5 mm pupil, in the two IOLs were 0.13% (0.0127 mm2) and 0.66% (0.064 mm2), respectively. The angular dependence of the straylight caused by the damage was similar to that of the normal PSF. The total average contribution to straylight was log(s) = −0.82 and −0.42, much less than the straylight value of the normal eye

    Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper

    Get PDF
    Adults diagnosed with Glioblastoma multiforme (GBM) are frequently faced with a 7% chance of surviving 2 years compared with pediatric patients with GBM who have a 26% survival rate. Our recent screen of possible glioma-associated antigen precursor protein (TAPP) profiles displayed from different types of pediatric brain tumors showed that pediatric patients contained a subset of the tumor antigens displayed by adult GBM patients. Adult GBM possess at least 27 tumor antigens that can potentially stimulate T cell immune responses, suggesting that these tumors are quite antigenic. In contrast, pediatric brain tumors only expressed nine tumor antigens with mRNA levels that were equivalent to those displayed by adult GBM. These tumor-associated antigens could be used as possible targets of therapeutic immunization for pediatric brain cancer patients. Children have developing immune systems that peak at puberty. An immune response mounted by these pediatric patients might account for their extended life spans, even though the pediatric brain tumors express far fewer total tumor-associated antigens. Here we present a hypothesis that pediatric brain tumor patients might be the best patients to show that immunotherapy can be used to successfully treat established cancers. We speculate that immunotherapy should include a panel of tumor antigens that might prevent the out-growth of more malignant tumor cells and thereby prevent the brain tumor relapse. Thus, pediatric brain tumor patients might provide an opportunity to prove the concept of immunoprevention
    corecore