20 research outputs found

    Results from PCR.

    No full text
    <p>A: PCR data show that pellets from whole blood samples (10 mL) spiked with higher concentrations of MSSA amplify sooner (pellet volume in PCR well = 8 μL). B: Contingency table for PCR analysis of processed positive (100 CFU/mL) and negative (0 CFU/mL) whole blood samples.</p

    List of microorganisms used in the current study and their cultivation conditions.

    No full text
    <p><sup><i>a</i></sup> Gram-positive bacterium;</p><p><sup><i>b</i></sup> Gram-negative bacterium;</p><p><sup><i>c</i></sup> Yeast</p><p>List of microorganisms used in the current study and their cultivation conditions.</p

    Images of the custom-made microbial concentration devices.

    No full text
    <p>Left: a blown-up view of the individual parts of the device. Right: a CAD model of a fully assembled device.</p

    Images of the pellets after lysing 10 mL of whole blood.

    No full text
    <p>A: Microscopic view of an unspiked blood sample after lysis process at 60x magnification; B: For reference, microscopic view of unlysed whole blood at 60x magnification; C: Front view of the pellets; D: Side view of the pellets; E: For reference, from left to right, 2.5, 5.0, 10, and 15 μL of whole blood.</p

    A novel device for collecting and dispensing fingerstick blood for point of care testing

    No full text
    <div><p>The increased world-wide availability of point-of-care (POC) tests utilizing fingerstick blood has led to testing scenarios in which multiple separate fingersticks are performed during a single patient encounter, generating cumulative discomfort and reducing testing efficiency. We have developed a device capable of a) collection of up to 100 μL of fingerstick blood from a single fingerstick by capillary action, and b) dispensing this blood in variable increments set by the user. We tested the prototype device both in a controlled laboratory setting and in a fingerstick study involving naive device users, and found it to have accuracy and precision similar to a conventional pipettor. The users also found the device to be easy to use, and recommended minor ergonomic improvements. Our device would allow performance of multiple POC tests from a single fingerstick blood sample, thus providing a novel functionality that may be of use in many testing settings worldwide.</p></div

    The shuttle valve in each of its three positions.

    No full text
    <p>Left: shuttle valve position one; airflow between capillary and atmosphere, allowing capillary to be filled. Middle: shuttle valve position two; airflow between piston chamber and capillary, allowing blood to be dispensed. Right: shuttle valve position three; airflow between atmosphere and piston chamber, allowing the chamber to be primed for another dispense.</p
    corecore