18 research outputs found
On the Possibility of Quantum Gravity Effects at Astrophysical Scales
The nonperturbative renormalization group flow of Quantum Einstein Gravity
(QEG) is reviewed. It is argued that at large distances there could be strong
renormalization effects, including a scale dependence of Newton's constant,
which mimic the presence of dark matter at galactic and cosmological scales.Comment: LaTeX, 18 pages, 4 figures. Invited contribution to the Int. J. Mod.
Phys. D special issue on dark matter and dark energ
The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity
We discuss various basic conceptual issues related to coarse graining flows
in quantum gravity. In particular the requirement of background independence is
shown to lead to renormalization group (RG) flows which are significantly
different from their analogs on a rigid background spacetime. The importance of
these findings for the asymptotic safety approach to Quantum Einstein Gravity
(QEG) is demonstrated in a simplified setting where only the conformal factor
is quantized. We identify background independence as a (the ?) key prerequisite
for the existence of a non-Gaussian RG fixed point and the renormalizability of
QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum
Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to
appear in General Relativity and Gravitatio
Management of latent Mycobacterium tuberculosis infection:WHO guidelines for low tuberculosis burden countries
ABSTRACT Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health approach to the management of LTBI in high risk individuals in countries with high or middle upper income and TB incidence of <100 per 100000 per year. The guidelines strongly recommend systematic testing and treatment of LTBI in people living with HIV, adult and child contacts of pulmonary TB cases, patients initiating anti-tumour necrosis factor treatment, patients receiving dialysis, patients preparing for organ or haematological transplantation, and patients with silicosis. In prisoners, healthcare workers, immigrants from high TB burden countries, homeless persons and illicit drug users, systematic testing an
Der Renormierungsgruppen-Fluß der konform-reduzierten Quantengravitation
Wir analysieren die Rolle von "Hintergrundunabhängigkeit" im Zugang der effektiven Mittelwertwirkung zur Quantengravitation. Wenn der nicht-störungstheoretische Renormierungsgruppen-(RG)-Fluß "hintergrundunabhängig" ist, muß die Vergröberung durch eine nicht
spezifizierte, variable Metrik definiert werden. Die Forderung nach "Hintergrundunabhängigkeit" in der Quantengravitation führt dazu, daß die funktionale RG-Gleichung von zusätzlichen Feldern abhängt; dadurch unterscheidet sich der RG-Fluß in der Quantengravitation deutlich von dem RG-Fluß einer gewöhnlichen Quantentheorie, deren Moden-Cutoff von einer starren Metrik abhängt. Beispielsweise kann in der "hintergrundunabhängigen" Theorie ein Nicht-Gauß'scher Fixpunkt existieren, obwohl die entsprechende gewöhnliche Quantentheorie keinen solchen entwickelt. Wir untersuchen die Bedeutung dieses universellen, rein kinematischen Effektes, indem wir den RG-Fluß der Quanten-Einstein-Gravitation (QEG) in einem "konform-reduzierten" Zusammenhang untersuchen, in dem wir nur den konformen Faktor der Metrik quantisieren. Alle anderen Freiheitsgrade der Metrik werden vernachlässigt. Die konforme Reduktion der Einstein-Hilbert-Trunkierung zeigt exakt dieselben qualitativen Eigenschaften wie in der vollen Einstein-
Hilbert-Trunkierung. Insbesondere besitzt sie einen Nicht-Gauß'schen Fixpunkt, der notwendig ist, damit die Gravitation asymptotisch sicher ist. Ohne diese zusätzlichen Feldabhängigkeiten ist der RG-Fluß dieser Trunkierung der einer gewöhnlichen -Theorie. Die lokale Potentialnäherung für den konformen Faktor verallgemeinert den RG-Fluß in der Quantengravitation auf einen unendlich-dimensionalen Theorienraum. Auch hier finden wir sowohl einen Gauß'schen als auch einen Nicht-Gauß'schen Fixpunkt, was weitere Hinweise dafür liefert, daß die Quantengravitation asymptotisch sicher ist. Das Analogon der Metrik-Invarianten, die proportional zur dritten Potenz der Krümmung ist und die die störungstheoretische Renormierbarkeit zerstört, ist unproblematisch für die asymptotische Sicherheit der konform-reduzierten Theorie. Wir berechnen die Skalenfelder und -imensionen der beiden Fixpunkte explizit und diskutieren mögliche Einflüsse auf die Vorhersagekraft der Theorie. Da der RG-Fluß von der Topologie der
zugrundeliegenden Raumzeit abhängt, diskutieren wir sowohl den flachen Raum als auch die Sphäre. Wir lösen die Flußgleichung für das Potential numerisch und erhalten Beispiele für RG-Trajektorien, die innerhalb der Ultraviolett-kritischen Mannigfaltigkeit des Nicht-Gauß'schen Fixpunktes liegen. Die Quantentheorien, die durch einige solcher Trajektorien definiert sind, zeigen einen Phasenübergang von der bekannten (Niederenergie-) Phase der Gravitation mit spontan gebrochener Diffeomorphismus-Invarianz zu einer neuen Phase von ungebrochener Diffeomorphismus-Invarianz. Diese Hochenergie-Phase ist durch einen verschwindenden Metrik-Erwartungswert charakterisiert.We analyze the conceptual role of background independence in the application of the effective average action to quantum gravity. Insisting on a background independent nonperturbative renormalization group (RG) flow the coarse graining
operation must be defined in terms of an unspecified variable metric since no rigid metric of a fixed background spacetime is available. This leads to an extra field dependence in the functional RG equation and a significantly different RG flow in comparison to the standard flow equation with a rigid metric in the mode cutoff. The background independent RG flow can possess a non-Gaussian fixed point, for instance, even though the corresponding standard one does not. We demonstrate the importance of this universal, essentially kinematical effect by computing the RG flow of Quantum Einstein Gravity (QEG) in the "conformally reduced" theory which discards all degrees of freedom contained in the metric except the conformal one. The conformally reduced Einstein-Hilbert approximation has exactly the same qualitative properties as in the full Einstein-Hilbert truncation. In particular it possesses the non-Gaussian fixed point which is necessary for asymptotic safety. Without the extra field dependence the
resulting RG flow is that of a simple -theory. We employ the Local Potential Approximation for the conformal factor to generalize the RG flow on an infinite dimensional theory space. Again we find a Gaussian as well as a non-Gaussian fixed point which provides further evidence for the viability of the asymptotic safety scenario. The analog of the invariant cubic in the curvature which spoils perturbative renormalizability is seen to be unproblematic for the asymptotic safety of the conformally reduced theory. The scaling fields and dimensions of both fixed points are obtained explicitly and possible implications for the predictivity of the theory are discussed. Since the RG flow depends on the topology of the underlying spacetime we consider the flat space as well as the sphere. Solving the flow equation for the potential numerically we obtain examples of renormalization group trajectories inside the ultraviolet critical surface of the non-Gaussian fixed point. The quantum theories based upon some
of them show a phase transition from the familiar (low energy) phase of gravity with spontaneously broken diffeomorphism invariance to a new phase of unbroken diffeomorphism invariance; this high energy phase is characterized by a vanishing expectation value of the metric
Guidance for the Evaluation of Tuberculosis Diagnostics That Meet the World Health Organization (WHO) Target Product Profiles: An Introduction to WHO Process and Study Design Principles
Existing high-priority target product profiles (TPPs) of the World Health Organization (WHO) establish important needs for tuberculosis (TB) diagnostic development. Building on this earlier work, this guidance series aims to provide study guidance for performing accuracy studies of novel diagnostic products that may meet the 4 high-priority WHO TPPs and thus enable adequate evidence generation to inform a WHO evidence review process. Diagnostic accuracy studies represent a fundamental step in the validation of all tests. Unfortunately, such studies often have limitations in design, execution, and reporting, leading to low certainty of the evidence about true test performance, which can delay or impede policy and scale-up decisions.
This introductory paper outlines the following: (1) the purpose of this series of papers on study guidance; (2) WHO evidence needs and process for the development of policy guidelines for new TB diagnostic tests; and (3) study design considerations, ie, general diagnostic study considerations, intended use of test and role in the clinical pathway, choice of population and setting, index-test specific issues, suitable reference standard and comparators, study flow and specimen issues, and finally key issues beyond accuracy that should be considered. The other 4 papers in this series will provide more detailed guidance for each of the 4 WHO high-priority TPPs.
By increasing the clarity around the clinical evaluation needs for tests that have the potential to meet the TPP specifications, we hope to support harmonized evidence generation and enable the WHO review process towards meeting the WHO End TB Strategy targets for reducing the incidence and mortality associated with TB
Guidance for the Evaluation of Tuberculosis Diagnostics That Meet the World Health Organization (WHO) Target Product Profiles: An Introduction to WHO Process and Study Design Principles
Existing high-priority target product profiles (TPPs) of the World Health Organization (WHO) establish important needs for tuberculosis (TB) diagnostic development. Building on this earlier work, this guidance series aims to provide study guidance for performing accuracy studies of novel diagnostic products that may meet the 4 high-priority WHO TPPs and thus enable adequate evidence generation to inform a WHO evidence review process. Diagnostic accuracy studies represent a fundamental step in the validation of all tests. Unfortunately, such studies often have limitations in design, execution, and reporting, leading to low certainty of the evidence about true test performance, which can delay or impede policy and scale-up decisions. This introductory paper outlines the following: (1) the purpose of this series of papers on study guidance; (2) WHO evidence needs and process for the development of policy guidelines for new TB diagnostic tests; and (3) study design considerations, ie, general diagnostic study considerations, intended use of test and role in the clinical pathway, choice of population and setting, index-test specific issues, suitable reference standard and comparators, study flow and specimen issues, and finally key issues beyond accuracy that should be considered. The other 4 papers in this series will provide more detailed guidance for each of the 4 WHO high-priority TPPs. By increasing the clarity around the clinical evaluation needs for tests that have the potential to meet the TPP specifications, we hope to support harmonized evidence generation and enable the WHO review process towards meeting the WHO End TB Strategy targets for reducing the incidence and mortality associated with TB