25 research outputs found

    A compilation of global bio-optical in situ data for ocean-colour satellite applications - version three

    Get PDF
    A global in situ data set for validation of ocean colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprises in situ observations of the following variables: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient, and total suspended matter. Data were obtained from multi-project archives acquired via open internet services or from individual projects acquired directly from data providers. Methodologies were implemented for homogenization, quality control, and merging of all data. Minimal changes were made on the original data, other than conversion to a standard format, elimination of some points, after quality control and averaging of observations that were close in time and space. The result is a merged table available in text format. Overall, the size of the data set grew with 148 432 rows, with each row representing a unique station in space and time (cf. 136 250 rows in previous version; Valente et al., 2019). Observations of remote-sensing reflectance increased to 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There was also a near tenfold increase in chlorophyll data since 2016. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) are included in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. The compiled data are available at https://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022)

    A compilation of global bio-optical in situ data for ocean colour satellite applications – version three

    Get PDF
    A global in situ data set for validation of ocean colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data set comprises in situ observations of the following variables: spectral remote-sensing reflectance, concentration of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficient, and total suspended matter. Data were obtained from multi-project archives acquired via open internet services or from individual projects acquired directly from data providers. Methodologies were implemented for homogenization, quality control, and merging of all data. Minimal changes were made on the original data, other than conversion to a standard format, elimination of some points, after quality control and averaging of observations that were close in time and space. The result is a merged table available in text format. Overall, the size of the data set grew with 148 432 rows, with each row representing a unique station in space and time (cf. 136 250 rows in previous version; Valente et al., 2019). Observations of remote-sensing reflectance increased to 68 641 (cf. 59 781 in previous version; Valente et al., 2019). There was also a near tenfold increase in chlorophyll data since 2016. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) are included in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. The compiled data are available at https://doi.org/10.1594/PANGAEA.941318 (Valente et al., 2022)

    Comparative study of Interleukin-18 (IL-18) serum levels in adult onset Still’s disease (AOSD) and systemic onset juvenile idiopathic arthritis (sJIA) and its use as a biomarker for diagnosis and evaluation of disease activity

    No full text
    Abstract Background Signs and symptoms establish the diagnosis of adult onset Still’s disease (AOSD) as well as of systemic onset juvenile idiopathic arthritis (sJIA). The published data regarding the importance of IL-18 as a marker for diagnosis and disease activity so far are conflicting. The aim of this study was to clarify the role of IL-18 as a diagnostic and disease activity marker in AOSD and sJIA. Methods Thirty adult patients diagnosed with AOSD and twenty children diagnosed with sJIA were included in the study. Clinical and laboratory data were obtained retrospectively for each patient visit whenever IL-18 serum levels were determined. IL-18 levels were determined by ELISA. Sixty-five adults and twenty-three children presenting with fever and/or arthritis who did not meet the criteria for a diagnosis of AOSD or sJIA served as comparison groups. Rau’s criteria and CRP values were used to evaluate disease activity. Results IL-18 levels were significantly elevated in patients with active AOSD compared to AOSD patients in remission and to the comparison group with a median of 16,327 pg/ml, 470 pg/ml, and 368 pg/ml, respectively (p < 0.001). Analogous to AOSD in active sJIA, the median IL-18 serum level was significantly higher with 21,512 pg/ml than in the comparison group with 2580 pg/ml (p < 0.001). At our cut-off point of 5000 pg/ml, the calculated specificity of IL-18 to establish the diagnosis of AOSD was 96.9%, and the sensitivity 63.3% (AUC = 0.870, p < 0.001). For the diagnosis of sJIA, a cut-off value of 10,000 pg/ml was chosen with a specificity of 100% and a sensitivity of 60% (AUC = 0.774, p = 0.003). At a cut-off value of 5000 pg/ml, the specificity was 62% and the sensitivity 65%. Conclusions This study gives further evidence to earlier publications of elevated IL-18 serum levels in active AOSD and sJIA, with up to 1000-fold higher concentrations compared to other rheumatic diseases. A clear association of IL-18 serum levels with disease activity in AOSD was found. The results support the use of IL-18 as an important biomarker in AOSD and sJIA

    A compilation of global bio-optical in situ data for ocean-colour satellite applications - version two

    No full text
    A global compilation of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (including, inter alia, MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO) between 1997 and 2017. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll-a, spectral inherent optical properties, spectral diffuse attenuation coefficients and total suspended matter. The data were from multi-project archives acquired via open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were propagated throughout the work and made available in the final table. By making the metadata available, provenance is better documented and it is also possible to analyse each set of data separately. This paper also describes the changes that were made to the compilation in relation to the previous version
    corecore