59 research outputs found

    Micro/Nano-Structural Examination and Fission Product Identification in Neutron Irradiated AGR-1 TRISO Fuel

    Get PDF
    Advanced electron microscopic and micro-analysis techniques were developed and applied to study irradiation effects and fission-product behavior in selected low-enriched uranium-oxide/uranium-carbide tristructural-isotropic (TRISO)-coated particles from fuel compacts in four capsules irradiated to burnups of 11.2 to 19.6% fissions per initial metal atom (FIMA) consisting of Baseline, Variant 1, and Variant 3 fuel types. Trend analysis shows precipitates were mostly random in their distribution along the perimeter of the inner pyrolytic carbon-silicon carbide (IPyC-SiC) interlayer with only weak association with kernel protrusion and buffer fractures. Pd is dominantly found in most precipitates in both intra and intergranular locations. Nano-sized Ag is predominantly found in grain boundaries and triple points with only two findings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). Generally, more element combinations exist for precipitates from particles with relatively low Ag retention compared to particles with relatively high Ag-retention irrespective of fuel type. This study shows the presence of Cs in particles from all compacts evaluated. From this work, no single fission product mechanism hypothesis can be reported. The complexity of mechanisms is further highlighted by the multiple variations of elemental combinations found in the more than 700 fission product precipitates examined. It seems that movement of Ag is not assisted by a specific element in all cases. Therefore, it is not necessarily true that a chemical-assisted transport mechanism is dominant. The presence of Ag predominantly on grain boundaries suggests that a grain boundary transport mechanism may be prominent. Studies to determine the effect of neutron damage are recommended for future work

    Through-thickness superconducting and normal-state transport properties revealed by thinning of thick film ex situ YBa2Cu3O7-x coated conductors

    Full text link
    A rapid decrease in the critical current density (Jc) of YBa2Cu3O7-x (YBCO) films with increasing film thickness has been observed for multiple YBCO growth processes. While such behavior is predicted from 2D collective pinning models under certain assumptions, empirical observations of the thickness dependence of Jc are believed to be largely processing dependent at present. To investigate this behavior in ex situ YBCO films, 2.0 and 2.9 um thick YBCO films on ion beam assisted deposition (IBAD) - yttria stabilized zirconia (YSZ) substrates were thinned and repeatedly measured for rho(T) and Jc(H). The 2.9 um film exhibited a constant Jc(77K,SF) through thickness of ~1 MA/cm2 while the 2.0 um film exhibited an increase in Jc(77K,SF) as it was thinned. Neither film offered evidence of significant dead layers, suggesting that further increases in critical current can be obtained by growing thicker YBCO layers.Comment: To appear in Applied Physics Letter

    Properties of recent IBAD-MOCVD Coated Conductors relevant to their high field, low temperature magnet use

    Full text link
    BaZrO3 (BZO) nanorods are now incorporated into production IBAD-MOCVD coated conductors. Here we compare several examples of both BZO-free and BZO-containing coated conductors using critical current (Ic) characterizations at 4.2 K over their full angular range up to fields of 31 T. We find that BZO nanorods do not produce any c-axis distortion of the critical current density Jc(theta) curve at 4.2 K at any field, but also that pinning is nevertheless strongly enhanced compared to the non-BZO conductors. We also find that the tendency of the ab-plane Jc(theta) peak to become cusp-like is moderated by BZO and we define a new figure of merit that may be helpful for magnet design - the OADI (Off-Axis Double Ic), which clearly shows that BZO broadens the ab-plane peak and thus raises Jc 5-30{\deg} away from the tape plane, where the most critical approach to Ic occurs in many coil designs. We describe some experimental procedures that may make critical current Ic tests of these very high current tapes more tractable at 4.2 K, where Ic exceeds 1000 A even for 4 mm wide tape with only 1 micron thickness of superconductor. A positive conclusion is that BZO is very beneficial for the Jc characteristics at 4.2 K, just as it is at higher temperatures, where the correlated c-axis pinning effects of the nanorods are much more obvious

    High-temperature change of the creep rate in YBa 2Cu 3O 7-δ films with different pinning landscapes

    Get PDF
    Magnetic relaxation measurements in YBa 2Cu 3O 7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (J c). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high J c values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.Fil: Haberkorn, Nestor Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Miura, M.. No especifíca;Fil: Baca, J.. No especifíca;Fil: Maiorov, B.. No especifíca;Fil: Usov, I.. No especifíca;Fil: Dowden, P.. No especifíca;Fil: Foltyn, S. R.. No especifíca;Fil: Holesinger, T. G.. No especifíca;Fil: Willis, J. O.. No especifíca;Fil: Marken, K. R.. No especifíca;Fil: Izumi, T.. No especifíca;Fil: Shiohara, Y.. No especifíca;Fil: Civale, L.. No especifíca
    • …
    corecore