34 research outputs found

    Structural basis for selective inhibition of immunoglobulin E-receptor interactions by an anti-IgE antibody

    Get PDF
    Immunoglobulin E (IgE) antibodies play a central role in the allergic response: interaction with FcεRI on mast cells and basophils leads to immediate hypersensitivity reactions upon allergen challenge, while interaction with CD23/FcεRII, expressed on a variety of cells, regulates IgE synthesis among other activities. The receptor-binding IgE-Fc region has recently been found to display remarkable flexibility, from acutely bent to extended conformations, with allosteric communication between the distant FcεRI and CD23 binding sites. We report the structure of an anti-IgE antibody Fab (8D6) bound to IgE-Fc through a mixed protein-carbohydrate epitope, revealing further flexibility and a novel extended conformation with potential relevance to that of membrane-bound IgE in the B cell receptor for antigen. Unlike the earlier, clinically approved anti-IgE antibody omalizumab, 8D6 inhibits binding to FcεRI but not CD23; the structure reveals how this discrimination is achieved through both orthosteric and allosteric mechanisms, supporting therapeutic strategies that retain the benefits of CD23 binding

    Physics Opportunities of e+e- Linear Colliders

    Get PDF
    We describe the anticipated experimental program of an e+e- linear collider in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current collider designs and the expected experimental environment. We then discuss precision studies of the W boson and top quark. Finally, we review the range of models proposed to explain the physics of electroweak symmetry breaking and show, for each case, the central role that the linear collider experiments will play in elucidating this physics. (to appear in Annual Reviews of Nuclear and Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde

    Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum

    Get PDF
    The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets

    IgE binds asymmetrically to its B cell receptor CD23.

    Get PDF
    The antibody IgE plays a central role in allergic disease mechanisms. Its effector functions are controlled through interactions between the Fc region and two principal cell surface receptors FcεRI and CD23. The interaction with FcεRI is primarily responsible for allergic sensitization and the inflammatory response, while IgE binding to CD23 is involved in the regulation of IgE synthesis and allergen transcytosis. Here we present the crystal structure of a CD23/IgE-Fc complex and conduct isothermal titration calorimetric binding studies. Two lectin-like "head" domains of CD23 bind to IgE-Fc with affinities that differ by more than an order of magnitude, but the crystal structure reveals only one head bound to one of the two identical heavy-chains in the asymmetrically bent IgE-Fc. These results highlight the subtle interplay between receptor binding sites in IgE-Fc and their affinities, the understanding of which may be exploited for therapeutic intervention in allergic disease

    Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcIRI

    No full text
    Among antibody classes, IgE has a uniquely slow dissociation rate from, and high affinity for, its cell surface receptor FcI RI. We show the structural basis for these key determinants of the ability of IgE to mediate allergic hypersensitivity through the 3.4-Ã.-resolution crystal structure of human IgE-Fc (consisting of the CI 2, CI 3 and CI 4 domains) bound to the extracellular domains of the FcI RI Î ± chain. Comparison with the structure of free IgE-Fc (reported here at a resolution of 1.9 Ã.) shows that the antibody, which has a compact, bent structure before receptor engagement, becomes even more acutely bent in the complex. Thermodynamic analysis indicates that the interaction is entropically driven, which explains how the noncontacting CI 2 domains, in place of the flexible hinge region of IgG antibodies, contribute together with the conformational changes to the unique binding properties of IgE. © 2011 Nature America, Inc. All rights reserved

    Conformational changes in IgE contribute to its uniquely slow dissociation rate from receptor FcIRI

    No full text
    Among antibody classes, IgE has a uniquely slow dissociation rate from, and high affinity for, its cell surface receptor FcI RI. We show the structural basis for these key determinants of the ability of IgE to mediate allergic hypersensitivity through the 3.4-Ã.-resolution crystal structure of human IgE-Fc (consisting of the CI 2, CI 3 and CI 4 domains) bound to the extracellular domains of the FcI RI Î ± chain. Comparison with the structure of free IgE-Fc (reported here at a resolution of 1.9 Ã.) shows that the antibody, which has a compact, bent structure before receptor engagement, becomes even more acutely bent in the complex. Thermodynamic analysis indicates that the interaction is entropically driven, which explains how the noncontacting CI 2 domains, in place of the flexible hinge region of IgG antibodies, contribute together with the conformational changes to the unique binding properties of IgE. © 2011 Nature America, Inc. All rights reserved
    corecore